
~" ."

Issue Number Z8

II
I

Programming - User Support

Appl ications

Starting Your Own DDS
What it Takes to Run a BBS

Build an AID Converter for the Ampro L.B.
A Simple Low-Cost AID Interface

The Hitachi HD64180
New Life for 8-bit Systems - Part 2

Using SCSI for Real Time Control
Separating the Memory and I/O Buses

An Open Letter to STD-Bus Manufacturers
Getting an Industrial Control Job Done

Programming Style
User Interfacing and Interaction

Choosing a Language for Machine Control
Using HTPL as a CNC Language

Patching Turbo Pascal
Removing the blasted ": =" Requirement

ISSN , 0748-9331

..~

THE COMPUTER JOURNAL
190 Sullivan Crossroad

l

Columbia Falls, Montana
59912

406-257-9119 Features

The COMPUTER
JOURNAL

Editor/Publisher
Art Carlson

Art Director
Donna Carlson

Production Assistant
Judie Overbeek

Circulation
Donna Carlson

Contributing Editors
C. Thomas Hilton
Donald Howes

Bill Kibler
Rick Lehrbaum

Peter Ruber
Jay Sage

Jon Schneider

EntIre contents copyrlght©
1987 by The Computer Journal.

SUbscription rates-$16 one
year (6 issues), or $28 two years (12
Issues) in the U.S., $22 one year In
Canada and MexIco, and $24 (sur
face) for one year in other coun
tries. All funds must be In US
dollars on a US bank.

Send subscriptions, renewals, or
address changes to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falls, Montana, 59912, or
The Computer Journal, PO Box
1697, Kalispell, MT 59903.

Bulletin Board-Our bulletin board
will be on line 24 hours a day at 300
and 1200 baUd, and the number Is
(406) 752·1038.

Address all editorial and adver
tising inqUiries to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falls, MT 59912 phone
(406) 257-9119.

The Computer Journal I Issue *28

Starting Your Own BBS
Running a board takes more than equipment, it also
takes time and skils - by R.E. McCain 6

Buiild an AID Converter for the Ampro L.B.
A one-chip A/D converter for digitizing and isolating
noisy low frequency signals - by John B. Rasor D.O 9

The Hitachi HD64180
Setting the HD64180's wait states and RAM refresh
rates, using the Programmable Reload Timers. and the
Direct Memory Access capabilities - by Jon Schneider 12

Using SCSI for Real Time Control
Early buses supported both memory and /10 expansion
within a single set of signals, and suffered from the
limitations of the required compromises - by Rick Lehrbaum. . 25

An Open Letter to STD·Bus Manufacturers
Comments on what is needed to make machines and
research labs go - by Jerry Nelson. Ph.D 29

Programming Style
Design of the user/program interaction is at least
as important as the problem solving algorithms
by Art Carlson 37

Patching Turbo Pascal
Using disassembled Z-BO source code to modify Turbo
Pascal to suit your style - by Clark A. Calkins.. . 39

Choosing a Language for Machine Control
The advantages of a compiled RPN Forth-like language
for Computer Numerical Control- by Joe Bartel A1

Columns

Editorial 3

Reader's Feedback 4

Z·SIG Corner
by Jay Sage 17

News•................................ · ·· .. ·.·· 36

Computer Corner
by Bill Kibler 44

Z sets you free!

ZCPR3: The UbnJries
The extensive documentation for the libraries
of ZCPR3, SYSLIB. Z3L1B. and VUB. A must
for any serious user of these programming
tools. Loose-leaf notebook style; easy to work
with as it will lay flat on your desk.

THERE'S MORE
We couldn't fit all Echelon has to offer on a
single page (you see how small this type is).
We haven't begun to talk about the many
additional software packages and publications
we offer. Send in the order form below and just
check the ·Requesting Literature· box for more
information.

i,

Pnce
$44.00 (3 disks)'
$89.00 (9 disks)
$99.00 (6 disks)'
$49.95 (1 disk)

$119.00 (7 disks)'
$69.95 (2 disks)
$59.50 11 disk)

$69.95 (3 disks)

$69.00 (1 disk)

$50.00 (1 disk)

$51.00 (1 disk)
$90.00 (1 disk)

$150.00 (4 disks)

$129.95 (1 disk)

$69.00 (8 disks)

$49.00 (1 disk)

$129.00 (9 disks)

$39.95 11 disk)

$39.95 (1 dISk)
$39.95 (1 disk)

$89.95 (3 diSks)

$39.99 (1 disk)

$99.00 (6 disks)

$99.00 (1 disk)

$19.95

$29.95

$24.00
$9.95

$8.95

~em Name
1 ZCPR3 Core lns1aJlatJon Pad<age
2 ZCPR3 U1JIitIes Pae:t<age
3 Z3-Dot·Com (Au1o-lnstall ZCPR3)
4 Z3-Dot·Com "Bare Minimum"
5 Z·Com (AutO-Install Z-System)
6 z-Com "Bare MInimum"
12 PUBLIC ZRDOS Plus Iby rtself)
13 KayPfO Z·System

Elootabie D1sk
20 ZAS/Zl.INK Maao Assembler

and wnker

21 lOM Dellugge< to< l108OIZ8Q/HD64180
CPU's

22 TranslalOrs'o< Assemble<
Source Code

23 REVAS3!4 DIsassembler
24 Spec\al1-

~ems 20 lt1rough 23
25 DSD-80 FUll ScrOWl

Dellugge<
27 The LJbranes. SYSLIB. 23UB.

and VUB
28 GraphICS and Windows

Ubranes
29 Spec\al1-

IIems 27. 28. and 82
40 1"IlU1/Ou1Put Rea>rdet'

lOP (IIOR)
41 Bad<gro<Jnd Pnnter lOP

IBPmter)
42 Programmallle Key lOP (PKey)
43 Spec\al1-

~ems 40 lt1rough 42
60 DISCAT

D1sk cataloging system
61 TERM:!

Communications System
64 Z-Msg Message Handling

System
81 ZCPR3: T1le Manuel

bound. 350 pages
82 ZCPR3: T1le UbnrtM

310 pages
83 Z-NEWS Newsiefter,

1 yr subsopoon
84 ZCPR3 and lOPs 50 pages
85 ZROOS Progr8rnmerS'.

......... 35pages
B8 ZoSyatMn U..... Gulcla

80 page tutonal

'Includes ZCPR3: T1le -....

The Z-System U..rs Guide
For those who are not technically inclined. This
is an excellent tutorial-style manual filled with
examples of how to use the power of ZCPR3I
Z-System most effectively. written by two
highly experienced Z users. (One user is a
lawyer. the other a writer; this proves that
anyone can use Z and benefit from it.)

BOOKS
We sometimes joke around the office that we
are really in the business of publishing, not
selling software. We have books. Lots of
books. We have to have lots of books,
considering how powerful our software is and
the large quantity of different packages we
offer. Here are our best sellers:

ZCPR3: The Manual
This is the "bible· for the ZCPR3 user. An
exhaustive technical reference, bound
softcover, 350 pages. Contains descriptions of
each ZCPR3 utility program. a detailed
discussion about the innards of ZCPR3. and a
full installation manual for those doing their own
installation. You could order it from B. Dalton,
but why? Get it from us.

INSTALLING ZCPR3IZ·SYSTEM
Echelon offers ZCPR3/Z-System in many
different forms. For $44 you get the complete
source code to ZCPR3 and the Installation files.
However, this takes some experience with
assembly language programming to get
running, as you must perform the installation
yourself.

For users who are not qualified in assembly
language programming, Echelon offers our
·auto-install· products. Z-Com is our 100%
complete Z-System which even a monkey can
Install, because it installs itself. Z-Com
includes many interesting utility programs, like
UNERASE, MENU, VFILER. and much more.

Echelon also offers -boatable" disks for some
CP/M computers, which require absolutely no
installation, and are capable of reconfiguration
to change ZCPR3's memory requirements. At
present. only Kaypro computers have this
option available.

Z-SYSTEM
Perhaps the only shortcoming of ZCPR3 is that
it is not a complete replacement for CP/M. This
is what the Z-System does. The Z-System
contains ZCPR3 and an additional module,
ZRDOS. and is a complete replacement for
CP/M. ZRDOS adds even more utility programs,
and has the nice feature of no need to warm
boot (AC) after changing a disk. Hard disk users
can take advantage of ZRDOS ·archive· status
file handling to make incremental backup fast
and easy. Because ZRDOS is wntten to take
full advantage of the Z80, it executes faster
than ordinary CP/M and can improve your
system's performance by up to 10%.

Other Features
There's much more to ZCPR3. like named
directones, online help system. etc" but it
can't be described on one page. If you would
like more information, consider the books
shown below.

Multiple Commands per Line
You can easily use multiple commands per line
under ZCPR3. Simply separate the indiVidual
commands With semicolons. For example, "PIP
B:=A:·.TXT:STAT B:·.·· will copy files and then
show you the STAT results.

Extended Command Processing
When you type a command under CP/M, it will
only look for the program in the current drive
and user area. ZCPR3 gives you more flexibility
by additionally searching other disks and user
areas when resolving commands. You have full
control of this function, called the PATH. ThiS is
probably the one element of ZCPR3 that is
missed most if you return to ·ordinary" CP/M.

WHO WE ARE
Echelon is a unique company, oriented
exclusively toward your CP/M-eompatible
computer. Echelon offers top quality software
at extremely low prices; our customers are
overwhelmed at the amount of software they
receive when buying our products. For
example, the Z-Com product comes with
approximately 80 utility programs; and our
TERM III communications package runs to a
full megabyte of files. This is real value for your
software dollar.

User-Programmed menu systems
ZCPR3 comes with three different menu
systems that you can use to create custom
menu-driven ·fronf ends· for your computer.
This is especially useful for setting up menus
for your spouse or co-workers to use the
computer, as they never have to see the A>
prompt. All they have to do is press a single
key to run any Single or mu~iple CP/M
programs, and when the task is done. control is
automatically retumed to the menu (ordinary
CP/M menu programs cannot do this).

ZCPR3
Echelon is famous for our operating systems
products. ZCPR3, our CP/M enhancement,
was wntten by a software professional who
wanted to add features normally found in
minicomputer and mainframe operating
systems to his home computer. He succeeded
wonderfully, and ZCPR3 has become the
environment of chOice for -power· CP/M users.

Also. ZCPR3 supports the capability of
grouping all your commonly used utility
programs into a library file ('.LBR). This is great
for systems with a small number of directory
entries per disk, as the library file only uses
one entry. It also has the advantage of
reducing disk space requirements for a given
sel of programs. allowing you to put more
programs on a disk. And the programs in the
library file are invokable from the command line
just like any other program not in the library.

(:: i) Echelon, Inc.
885 N. San Antonio Road, Los Altos, CA 94022 USA
415/948-3820 (order line and tech support)
NAME _
ADDRESS _

ORDER FORM

Payment to be made by:
[J Cash
[J Check
[J Money Order
[J UPS COD
[J MastercardNisa:

#_--------
Exp. Date _

ITEM

Subtotal

Sales Tax

PRICE

TELEPHONE DISK FORMAT _

o REOUESTING LITERATURE

2

Califomia residents add 7"1. sales tax.
Add $4.00 shippinglhandling,

ShippingiHandling

Total

The Computer Journal/Issue 1t28

Which Comes First
The Chicken or the Egg?

am basically an experimenter who
wants to use computers to perform tasks.
and most of the things which I want to do
are unconventional-I am basically not a
programmer or a hardware designer. but I
have to work in both of these areas in or
der to accomplish my goals. I have no
desire to write large elegant programs or
to design new computer systems. but I can
write small to moderate size programs or
modify something which almost works if I
have the source code and I can wirewrap
simple boards or do a hardware patch on
an existing board. But. I get very
frustrated because very few things do
what I need to do the way I want them
done!

I've come to the conclusion that too
many people are taking an existing
operating system or hardware system and
then trying to force it to do everything. I
contend that this is backwards! We should
first determine what it is that we want to
do. and then determine what we need in
order to do it. Both hardware and sof
tware are cheap compared with what they
were a few years ago, and we should select
the tools needed for the individual job.

I've spent too much time trying to find
what I need, but all I've found are
elaborate systems which attempt to do
everything for everyone with fancy
graphics and the designer's idea of a user's
interface-the problem is that they don't
do the simple things that I need the way
that they should be done.

For me, it's back to the basics (that's
basics as in fundamentals, not BASIC the
language), and I'm not going to be con
cerned about being compatible with
anyone else or using the hottest new
devices. I'll just use whatever enables me
to get the particular job done whether it's
myoid Apple II + or one of the 32-bit

The Computer Journal/Issue #28

Editor's Page

chips with a coprocessor. If need be, I'll
start with a bare board and wirewrap
(groan).

Ten or fifteen years ago what we could
accomplish was limited by the devices we
had to work with. today what we can ac
complish is only limited by what we can
think of! And I can think of lots of things
which are difficult to implement because
of the sytems available. The devices exist;
but the hardware and software systems are
unsatisfactory. and I intend 'roll my
own.'

My approach is to analyse the ap
plication to determine the requirements
for the particular job. and then to com
pare these with the capabilities of what is
available. If something does the job well,
I'll use it-if something almost does the
job I'll consider modifying it-and if I
can't find anything which does the job the
way I want it done, I'll design something
which does. The guiding principle for in
dustrial and control applications is KISS
(Keep It Simple Stupid), and my
guidelines for judgement include doing it
well without unnecessary embelishments
because these additional unused features
result in slower response, larger size,
higher cost, and/or poorer reliability.

"today what we can
accomplish is only limited
by what we can think of!"

This is different than the usual ap
proach of putting a PC in an office or on
a laboratory desk, and then forcing it to
do everthing regardless of how poorly it is
suited for the job. But I'm talking about
an entirely different concept in the
machine shop, in the factory, in the
chemical plant, or at a remote location,
where the normal desk top computer is
not suitable, and where the size,
reliability, and other requirements com
bined with the critical nature and/or
production volume justify the effort in

designing a package for the specific ap
plication.

During the next few years, the desk top
hardware and software systems will
become so complex, and so readily
available from major suppliers, that there
will be little need for us little guys in the
major market. We'll have to work in a
niche market such as the industrial and
control field which is growing very
rapidly, and which can not be so easily
dominated by a few major suppliers
because of the fact that things have to be
tailored for each specific application. Just
as microcomputers for individuals
replaced the all-purpose group-user main
frames. dedicated microcontrollers op
timized for specific applications will
replace general purpose microcomputers
for many uses.

Achievers vs. Chrome Collectors
Some photographers, will always tell

you about the outstanding pictures they
are going to take REAL SOON NOW
when they can afford the newest, state-of
the-art, high priced equipment. It doesn't
matter that they already have a room full
of equipment-as soon as something new
is announced they set their current equip
ment aside and wait till they can obtain
the latest creation. And of course, by the
time they have it, something even more
advanced will have been announced and
they'll repeat the never ending cycle.
These photographers are called 'chrome
collectors' because they try to solve their
problems by spending money on equip
ment instead of spending the effort to ob
tain the maximum potential of what they
already have, and all too often some kid
with a very limited budget but a lot of
smarts will buy an old camera for a few
bucks at a rummage sale and produce
prize winning pictures while the chrome
collector is chasing the non-existant per
fect camera.

Most of us serious computerists are
guilty of lusting for every new computer
and peripherial as soon as it is announ
ced-I freely admit that I'd like to have
every system ever made, and the time to
do nothing but learn all about every one
of them-but we have to face the fact that
in the majority of the cases we have not

(Continued on page 32)

3

Reader's

Registered Trademarks

It is easy to get in the habit of using l

company trademarks as generic terms,
but these registered trademarks are
the property of the respective com
panies. It is important to acknowledge
these trademarks as their property to
avoid their losing the rights and the
term becoming public property. The
following frequently used marks are
acknowledged, and we apologize for
any we have overlooked.

Apple II, II + , lIe, lIe, Macintosch,
DOS 3.3, ProDOS; Apple Computer
Company. CP/M, DDT, ASM, STAT,
PIP; Digital Research. MBASIC;
Microsoft. Wordstar; MicroPro Inter
national Corp. IBM-PC, XT, and AT;
IBM Corporation. Z-80, Zilog. MT
BASIC, Softaid, Inc. Turbo Pascal,
Borland International.

Where these terms (and others) are
used in The Computer Journal they are
acknowledged to be the property of the
respective companies even if not
specifically mentioned in each occuren
ceo

M
o
V
I
N
G

?
•

Make certain that TCJ follows you
to your new address. Send both old and
new address along with your
expiration number that appears on
your mailing label to:

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, MT 59912

If you move and don't notify us, TCJ
is not responsible for copies you miss.
Please allow six weeks notice. Thanks.

4

Problems With Smartkey
In issue #24, Robert W. talks about

using Smartkey with Wordstar.
My problem is more basic. How do you

use smartkey? I just can't get Smartkey
to work because I can't, not because it
won't.

I am using an Xerox which I assembled
from here & there. It is a model82o-n et
ch 2with two 8" floppys. It uses ZCPR2 on
the system program. I did not do it.

Can anyone help?

Hiram De Santis
1896 Keewin Ave. NE
Palm Bay, FL 32905

HD64180Fan
Bill Kibler,

I am responding to your Computer
Corner column in TCJ #'El, the one you
wrote on Thanksgiving on your
Heath/Zenith 171.

How do I link the MicroMint SB-l80 to
the STD bus using Ampro's products?
Here is some background.

I want target system and development
system to both remain 8-bit, and the
development system must be based on
the Hitachi HD64180. Accept these as
givens; the background for those
decisions is available for your critical
comments on my"open letter to SID Bus
manufacturers. "

It doesn't HAVE to be a MicroMint SB
180. But do you know of any other
HD64180 which comes closer to being
available as a turn-key system? With as
much support? Price/performance?

It doesn't have to be separate
development system and STD bus
system, but do you know of any turn-key
HD64180 system which itself resides on
the STD bus? There are some CPU cards
listed on the enclosed open letter, but
where are the configured systems?
Every manufacturer assumes every
developer wants to develop on a PC.
Compared to a 4 MHz, 64K vanilla CP/M

system, I would prefer the PC too. But
with the availability of a faster 6 to 10
MHz Hitachi 512K system, I would prefer
the Hitachi, not just for speed, but for
simplicity; target and development
system are CPU and instruction set iden
tical; no cross software, no in-eircuit
emulation.

It doesn't have to be an Ampro SC
SI/lOP intelligent I/O processor on the
SID bus and a SCSI socket on the
development system. But do you know of
any simpler or more complete or better
supported solution to linking a computer
and an STD Bus expansion chassis
together as one system?

The state of AMPRO: they have
available an 80186 system with linked
SID bus, complete. But we want 8 bit.
The Z80 SBC has no SCSI, but you can
unplug the Z80 and plug in a piggy-back
in order to add a SCSI port. The SID bus,
of course, gets the SCSI/lOP, but AM
PRO has no software to integrate the
SID expansion with the ZDOS BIOS. As
for HD64180, it is not in their product line.
You can unplug the Z80 an add a 64180
plus RAM from MAN. Systems, but
then there goes ability to retrofit a SCSI
port. Clearly one needs a 64180 card
designed with all the RAM and the SCSI
from the ground up. That's where the
MicroMint SB-l80FX comes in, but who
has configured THAT into a complete
system with SID cage?

"The driving force is neither software
or hardware, but rather the solutions to
problems" (Art Carlson, Editor, TCJ).

So there it is. How would you put it
together?

Jeremiah I. Nelson, Ph.D.
Working Group in Biophysics
Philipps University; Renthof 7
D-3550 Marburg (tel: 06421/284161)

Editor's Note: Ampro's Z80 Little
Board Plus now has the SCSI port on the
board and SCSI support software is also
available, so the MAN. 64180 board can
be added and still provide the SCSI port.

The Computer Journal/Issue #28

Byte Magazine called it.

\

Feedback

Featured on the cover 01 Byte. Sept 1985.
the SB 180 lets CPIM users upgraae 10 a
last. 4" x 7'Ie' smgle board system

TURBO MODULA-2 569.00
TURBO MODULA-2 with

Graphi. Toolbo•..... __ ..589.00

TELEX
643331

TO ORDER
CALL TOLL FREE

1·800·635·3355

For Technical InformatIon or ,n CT. call:
1-203-871-6170

r-~ M;c"'mlnt, 'nc,
I ~ 4 Park Street

.. j Vernon, CT 06066

The SB180
Single Board Computer

• 6MHz 64180 CPU
(Z80 instruction superset). 256K RAM.
8K MOnllor ROM With deVIce test. dIsk
format. read/wrlte

• MinilMicro Floppy Controller
(1-4 drives. S,nglelDouble DenSIty.
1-2 SIded. 40/77/80 track 3 '12:' 5 'I."
and 8" drives)

• Measures 4" .7'1.: with mounting holes
• One Centronics Printer Port
• Two RS232C Serial Ports

(75-19.200 baud wllh console port
aula-baud rate select).

• ZCPR3 (CP/M 2.213 compatible)
• Multiple disk formats supported
• Menu-based system customization

~
5B18001

S8180 computer board w/256K
bytes RAM and ROM monllor
... _..... _••.... _.. _..5299_00

5B18001-20
same as above wIZCPR3. ZRDOS
and BIOS source ...•....5399.00

COMM1800S
SCSI Interface .•••......5150.00

Now Available

----====----------.

system. A good way to check this is to see
what is being manufactured by the 40
STD Bus makers. The article in Com
puter Design has a table showing eight
speciality cards (8032, 8052, TMS9995,
TMS32020), 11 others using 68Ks, 14 for
the 6809 (1 65Fll, Forth on a chip>. The
PC class cards were 32 types of 8088,
80188/617, V20, V50. The big winner
however was 65 cards of the ZOO and 8085
type. Your interest in the 64180 has only 4
cards being made. 2 from one company.
That is 136 cards, almost half of which
are the easy to program and fast ZOO. I
called all three 64180 people, one is not in
production yet (very iffy), one was a
special project, and one company has it
for sale and thinks you could use their
CP1M (no extra memory access). Which,
if all you are interested in is the speed,
pull your Z80 and watch the program
scream at 9.2 MHz on the 64180 (using old
CP1M). That is what I like about the SID
(or any good bus system), the ability to
keep your I/O and just upgrade the CPU
or memory.

There are two questions that these fac
ts don't cover, how much memory does
the average SID system use, and how
many are running programs written 4 or
5 years ago. I feel one of the good points
which ZOOS and CPIM are good exam
ples of, is just how much you can get done
in 64K of memory. I doubt that many in
dustrial applications need the larger
memory of the PC cards. Those PC cards
are used, I guess by the newer
programmers who have only learned on
PC monsters and could care less about
fast assembly language (this was
validated by one of the tech people I
talked to and some other articles listing
the new "C" compliers for speciality
CPU chips>. I will admit that there are
some new applications that could use the
bigger more complex multiuser options
now available on the STD Bus, but as a
whole the U.S. is behind in automation.
What I mean by this, is that I have not
seen enough new applications that would

(Continued on page 40)

Response to Dr. Nelson's Letter
Let me say I am happy to get the chan

ce to comment on your letters that bring
up some interesting questions. The STD
Bus is doing pretty well, but is lacking in
some areas. As a fan of Forth I have
noticed that not many STD Bus people of
fer Forth as an operating system, as they
once did. I feel your main complaint was
the lack of complete systems, turn-key
ZOOS 64180 to be exact.

I have just recently read an article
(Computer Design/Feb. 15, 1987)
covering all single board computers, and
most are not offered as complete
systems. There are two reasons for this,
lazyness (more accurately; hard work
with little return) and users' needs.
While working at a S-l00 company, I tried
to get complete systems offered through
us. The owner decided the extra work
would not match possible outlays. They
also said "we manufacture BOARDS for
people who sell systems."

In the case' of the SID Bus, these
products reflect the industrial users'
needs and not general consumers in
terests. I feel one of the strong selling
points of the STD Bus is the manufac
turer's feeling that you should integrate
your own system. This may mean more
work for you, but the result is a product
that meets your own special uses. Should
you want a system that can do regular
computing, buy a regular computer. If
you want a fast machine for a single job,
buy SDT Bus cards and make your own
system.

What you are really saying, and this is
very true, is that more complex CPUs
can make too complex a system for most
people to put together. This is the
reasoning that got me into Forth and
Hawthorne Technology's 68K operating

Dr. Nelson's open letter to STD Bus
manufactures is reprinted in this issue.
Send your feedback to Nelson either
directly to him (with a copy to TCJ), or
send it to us and we'll forward it.

The Computer Journal/Issue #28 5

Starting Your Own BBS
What it Takes To Run a Bulletin Board

by R.E. McCain

So you want to run an Electronic Bulletin Board System?
Once you commit yourself to having an operational system "on
line" you find that you are on a homemade raft floating down a
river. When the stream is wide and sluggish it seems that you
are not going anywhere. When you reach the rapids things go by
so fast that you loose track of who you are, where you are going,
and run the risk of drowning!

I know that it may sound like the same old saw everyone
keeps pounding in your ears, but go slow. Keep your eyes and
ears open to your surroundings. Asmall slip up at the beginning
can cause endless hours of frustration later.

So lets start with the assumption that you, your spouse, your
company or club wants an operating BBS.

• What are your present resources?
• How skilled are you at programming
• How much can you afford to spend?
• How much time will you have to set. up the system?
• How much time will you have to maintain the system?

Let's address these issues before we even look at the
mechanics of a working BBS, since everything hinges on the an
swers.

WHAT ARE YOUR PRESENT RESOURCES? Do you have
a spare computer hanging around? How standard is it? (I.E.
CP/M, MS-DOS, APPLE. ATARI, COMMODORE) If it is a
prototype of a Monster 9001 that Uncle Louie left you in his will,
you have NO DOCUMENTATION and not the slightest idea how
it works-FORGET IT! How much software do you have for it?
NOT how many games, but really useful stuff like BASIC,
PASCAL, C, etc. and their respective compilers, and while we
are at it, utilities, assemblers, editors, and so on.

HOW SKILLED ARE YOU AT PROGRAMING? I am not
asking whether you are a software guru, reknown'd for your
comprehension of the inner mysteries of UNIX, or some similar
stuff... just how comfortable are you with simple things like the
basic command syntax of your "target" computer. Do you
recognize the A> in CP/M? Does the word PIP mean anything
more than. a Charles Dickens character? If you want to look at
the contents of a disk do you type DIR, CATALOG, or "Is -I"? If
little of this makes sense, head off in one of two directions: go
find a GOOD software supplier who will provide you with a tur
nkey system, or prepare yourself to learn a LOT about what
makes your machine tick! !

HOW MUCH CAN YOU AFFORD TO SPEND? This seems
to be a good time to look at the two strategies of setting up a
BBS. If you have a deep pocket (or friends in high places) you
can get a system that will do just about everything but put out a
cigarette! (With a little robotics coupled with an infrared
camera you too could have a more positive way to remind others
not to smoke.) Beware the Jabberwocky salesman who wants to

6

sell you a VAX driven by a little old UNIX clone! Shop around,
become an informed consumer before you pull out your plastic.
Look at the software now available, do NOT trust VAPOR
WARE PROMISES!

The other (and possibly more practical for those who have
no large bank accounts) method is the component assembly
technique. You purchase a CPU (this is not 1960, an AMPRO Lit
tle board or equivalent is just fine, or you could find one of the
many IBM-PC clones), a floppy drive or two (the more storage
space the better), and a display device. Get the thing running
and learn its quirks and capabilities, then add on a modem. Get
the fastest auto answer you can find that has Bell103A and 212A
compatibility, smartmodems are now so cheap it makes sense
to get one, rather than an old dumb clunker. As time goes by,
you can add a hard disk or two, a printer, etc. When you are
ready to test the BBS software, use your home phone line to
verify operation, but have a separate line put in for the BBS
before you start advertising!!! The $10 a month for the second
line is well worth it... in ulcer reductions alone!

HOW MUCH TIME WILL YOU HAVE TO SET UP THE
SYSTEM? This one is the old time / money / involvement (to the
exclusion of all else) equation. Never expect everything to work
as planned! A simple BBS with a purchased turnkey software
package on the exact machine specified may work within the
first hour.... or it may take months (if some manufacturer
changed something and didn't tell anyone!). If you enjoy put
tering, you can have "something up" fairly quickly and spend
the rest of your life improving it.

HOW MUCH TIME WILL YOU HAVE TO MAINTAIN THE
SYSTEM? Some systems require almost daily nursing and
feeding, while others can take care of themselves. On a small
system (under a couple of megs of disk space) you have to do a
lot of housekeeping or else you run out of disk space quickly. The
type of BBS you choose will also determine how closely you must
monitor things. A closed (no unverified callers allowed) system
is less subject to gatecrashers. An open forum where no one can
enter the operating system provides "ragchewing" but offers
little for software exchange. Asoftware exchange must constan
tly be on guard for those who would upload copywritten or
proprietary software for illegal exchanges, as well as for the
pranksters who upload hard-disk killer stuff.

This leads us to a discussion on what it is that you want your
BBS to be able to do for you and your users. The primary uses
for a BBS are:

1) Networking for those of similar interests.
2) Software exchange of public domain or

"shareware"programs.
3) A business or club desiring to connect field personnel to a

central location.
4) a shared resource. such as a database.

The Computer Journal/Issue #28

'~

5) Passing the time! ragchewing-an old Amateur Radio
word)

6) Providing a problem solving/informative service for
customers or friends.

7) No doubt many other ideas will occur as time marches
on..

Notice how many of the above blend into each other... What
was once considered a frivolity (Amateur Radio for example) is
a national resource in times of trouble.

So you ask, what are the major components of a BBS?

1) Communication with the outside world-a modem.
2) Information storage and retrieval-memory, disk drives.
3) An executive to direct the process-the software.
4) An engine to do the work-the comput~r.

5) Documentation! Get all the manuals, write everything
down, you will need it six months from now when something
traumatic happens (Spilled cola on the only boot floppy or in
stalling a hard disk, etc.).

All of these can be in as small a package as a TRS80-100, or
as large as a CRAY2 complex. I do not recommend either ex
treme!

A good size for a BBS is a typical CP/M or MS(PC)-DOS
machine. An old IMSAI with hard sectored Micropolis 96 tpi
drives might only be servicable for a short while, since
replacement parts are getting scarce, but might be enough to
get started. Public domain software is usually written for CP/M
or MS-DOS. The Apple 1[series and Macintosh are sort of non
standard in this area, as are Atari and Commodores. However,
you can add the CP/M options (which are often kludges I do not
recommend for something that must be reliable for months or
years>.

Lest I neglect to mention it anywhere else, advertising is,
and must be, a key element in setting up your system. You must
somehow inform the folks that you want to use your BBS of its
existence! Anything from word of mouth to billboards is accep
table. For example, my BBS gets a free plug in both "Computer
Currents" and "Microtimes" in every issue. Many trade,
professional, hobby and specialty publications are willing to
give space to "networking activities.' I

Most of the public domain software available for BBS use is
written for Apple, CP/M or MS-DOS compatible, and I recom
mend the Public domain stuff highly, mainly because it seems to
be far more reliable and (surprisingly) better documented and
supported than the Commercial packages! The major hangups
with most public domain stuff are that many of them assume
that you have such exotica as BASIC, C, or Pascal compilers.
This means you do have to spend some money after all... but, it
also gives you the freedom to CHANGE the things you do not
like!

A few of the Public Domain BBS packages have recently
simplified things a bit. Programs such as MBBS and RBBS3 now
have pre-compiled software (both are written in Microsoft
Basic, which has a compiler (BASCOM) which was never
designed for long and complex programing efforts>. While this
does simplify matters somewhat, it removes a little of the
flexibility. So RBBS3 also supplies the source code, for those
with the inclination to modify beyond the options offered in the
install program.

However, few of the BBS programs live alone! Most require
BYE to answer the phone. While BYE can be a standalone for a

The Computer Journal/Issue #28

very small scale system, it usually hooks into either a message
system (MBBS, METAL, OXGATE, PBBS, RBBS, ZBBS and
the like) or a shell of some sort (such as XMENU>. Most
Message systems provide for user logins, passwords, keep track
of mail, provide bulletins, news, help, feedback for the operator,
chat and so on.

There is usually a way to get out of the mes:;age system into
the operating system of the host computer. BYE will typically
filter out nasty control characters, hide system files, deny
downloads of .COM files (rename the ones you want to be
downloadable as .OBJ), deny uploads of .NDR, .ENV..NDX,
and .RCP files (for ZCPR3 systems) and keep track of the users
time on the system. The caller may then function in very much
the same way as with their home computer. One can up and
download files, view text files, look at directories (both of user
areas and of .LBR files), and find out what resources the system
has to offer (FOR, NEW, SYSMAP etc.>. Many of these fun
ctions could be combined in a shell with menus to guide the
novice through the learning process, with cptions to enter the
real "COMMAND" level at the discretion of the SYSOP (that is
the person who runs the board-i.e., you).

I'd like to clear up some possible confusions about the
names and functions of various pieces of software I've men
tioned. There are at least 3 versions of RBBS, RBBS3 is written
in Microsoft Basic, RBBS4 in BDS C, and there is also RBBS-PC
for the IBM-PC. KMD is starting to replace (or at least co-exist
with) XMODEM as a block transfer program. BYE5 was writ
ten to merge the features of MBYE and BYE3. PBBS is written
in assembly language, which might be ideal, except that MBO or
an equivalent macro assembler is required. ROS (written in
Turbo Pascal) and RBBS-PC are both stand alones that include
the BYE and XMODEM functions internally.

Our BBS system is typical of a "Homebrew BBS." It has an
AMPRO IB Main board with SCSI bus, a 6 meg Shugart hard
disk with a Xebec 1410 SCSI controller, a Shugart 455 48tpi and a
Shugart 465 96tpi. The 48tpi drive enables us to read/write most
other formats and the 96tpi is for backup. It uses an auto answer
300/1200 baud VenTel modem (a dumb modem, although funds
are being raised for a smart 3/12/2400 modem) and is housed in
a modified surplus TeleVideo case.

We started out with a homebuilt "tower" sitting on the floor
under a desk. For the first few months we used 3surplus Shugart
410 96tpi single sided floppies (the worst model that they ever
built-notoriously unreliable). There were discrete linear power
supplies in the bottom which made it stable (but warm), and a
cooling fan (with a filter that had to be washed at least once a
month). The linear supplies were cheap, the fan is needed for
the reliability one expects from a BBS. We use a second hand
ADDS Viewpoint terminal with the bell muted and the intensity
turned down. Since the terminal is on 12 to 24 hours a day, it is
better not to burn the phosphor prematurely. We use BYE5,
RBBS3, KMD, and XMENU, but could just as easily use BYE3,
PBBS, XMODEM and allow access directly to C/PM .

The one area that the SYSOP cannot skimp on is MAKING
REGULAR BACKUPS OF THE ENTIRE SYSTEM. There will
inevitably come a time when the disks crash, you are attem
pting to do housekeeping and run out of disk space, or some
other disaster strikes! It is much easier to enter a general
bulletin to the effect that you had to restore last weeks backup,
will everyone please check and see if they need to re-enter a
message, etc. than to begin the entire process of rebuilding from
scratch.

Since we ran our BBS for 9 months before the hard disk went

7

on line, we can survive a hard disk crash by putting the floppy
backup set in, and re-booting. We may not have all the resources
because our disk space just dropped from 7 meg to 1.2 meg, but
we are still online. Plan for such contin~encies! Nothing is so
demoralizing to your users than a BBS that is always down!
(And to you too, for that matter!)

There has been a lot of concern about "gate-crashers," Le.
hackers whose greatest joy in life is crashing things like BBS
systems. I have found that many of the problems encountered in
the process of setting up and running a BBS are blamed on such
folks, but closer examination often reveals "user error,"
"SYSOP error," a floppy at the end of its life, or noisy phone
lines. Use your troubleshooting skills. If you really suspect a
"hacker" at work, set the BYE option that saves every charac
ter entered by the remote user in a log. That will give you a clear
audit trail of the circumstances of the failure. You most likely
will find that any time you have "improved" the system in some
way, you are the guilty party! Never make a major system
change without checking things thoroughly!

Troubleshooting is most easily accomplished by setting up
another computer or a terminal and modem up on your voice
phone line to call the BBS phone line. (You did install a second
line?) This enables you to easily emulate the average user and
see what happens from both ends simultaneously. If you cannot
do this because you don't have the resources, the second best
thing is to arrange with a friend who has a modem and computer
to call up the board and capture everything so you can review it
later. Try using machines wih different screen sizes. It is
amazing how different your menus written on an 80 column
display look on a 40 TV screen!

As time goes on, you will find that the variations in keyboar
ds, displays, modems, and software used by your callers will
create little annoyances that you need to resolve (usually to the
lowest common denominator>. Should you be blessed with a
situation where all your users have identical stuff, you may
ignore this paragraph, otherwise be forewarned! Text files writ
ten on a Macintosh word processor usually come out as garbage
on a machine that expects an ASCII text file. Other text files
(such as those from Wordstar) may need to have the 8th bit
stripped off. On the other hand, some Commodores go into
graphics mode with the 8th bit off, while PCs go into graphics
mode with the 8th bit set. These problems most often come up
during XMODEM transfers, where an exact image is transmit
ted. ASCII dumps and saves may be better for text files. You
and your users will have to work out solutions to these problems.

Some machines (the old Apple II for example) do not
produce certain ASCII characters without some sort of kludge.
Stay away from those characters when you generate one key
commands! Some communications software, such as
CrossTalk, uses the ESC key for local command initiation. Is it
fair to the caller to haveto change all their default parameters
so they can use your BBS?

If the above has given rise to any thoughts about forgetting
any plans you had for implementing a BBS, I apologize. I've had
a lot of fun getting mine to work (though I've had many
frustrations-mostly because I tried to rush things) and I enjoy
the daily challenges of keeping it online, interacting with the
callers, and watching the screen as some new user discovers the
nooks and crannys built into the system.•

I'

8 The Computer Journal/Issue 1t28

Build an AID Converter for the Ampro L.B.
A Simple Low-<;:ost AID Interface

by John B. Rasor, D.O.,

10K

_----~pullo oul

.....---+ square wave out

t-'-tAlV_+5

1-----+5

t-----Gnd

10K

input.
Since only a single external connec

tion to the board is required, I used a
removable IC-type micro-clip. Otherwise
it would be necessary to solder to the chip
lead. If you use the 16 bit counter scheme,
another jumper needs to either be
soldered or clipped from CTC pin 9
(lC/T02) to CTC pin 20 (CLK/TRGJ) to
cascade the two counters. Ampro's Time
and Date commands will work with these
jumpers in place (but not while they are in
use!) A connection to the system Ground
also needs to be made somewhere. Usually
the power supply or case is more con
venient than the CTC or other chip.

The l80 CTC chip contains four in
dividual channels that may be used either
as counters or timers. Except for the lack
of an external output signal from channel
3, they are identical. Each channel must
be initiallized before using it. This is done
by issuing a combination reset and chan-

10K

14

2 13

3 12

4 TSC9400CJ 11

S 10
66pf

6 9

1 •

[
-------------~.. to input lource

--(O-p"'''I_NI''')~ I Mo.

no connocrlon

-5-+----f

-5--+---~

-5
lOOK

pin 21 of the Little Board CTC chip. This
is the counter trigger for the unused CTC2
channel (CLK/TRG2). CTC3 is used only
for allowing interrupts from the floppy
disk controller, a feature which is not
supported by any software I am familiar
with. Therefore, I cut the trace from CTC
pin 20 and FDC pin 28 between two
plated-through holes on the top of the
board. This allows 16 bit counts to ac
cumulate, which makes the software sim
pler and better performing. The same sof
tware can be u~ed without cutting the
trace, but the user must insure that the
timing interval is short enough to prevent
overflowing the 8 bit counter.

The output frequency is directly
proportional to the input current, and in
versely proportional to the sum of the
smaller capacitor plus an internal 12pf
capacitor. This design gives a theoretical
maximum frequency of 128 khz. In prac
tice, I get about 98.S khz for the full SOua

T his article describes a simple, easy to
install analog.to digital converter for the
Ampro Little Board. I developed it for
acquiring biomedical data, so it is well
suited for digitizing and isolating noisy,
low-frequency signals. The interface
requires only a single clip-on connection,
so it should be useful for those limited by
the single input port available on an unex
panded Little Board. Only a single 14 pin
chip is necessary.

The actual analog to digital conver
sion is performed by a TSC9400CJ
Voltage to Frequency convertor. The
pulse stream is connected to one or two of
the spare l80 Counter/Timer (CTC) ports
on the Little Board. The "B" serial port is
used by the software for timing sampling
intervals. At the end of one of these interc

vals, the corrected value in the Coun
ter/Timer register(s) is directly propor
tional to the average input voltage during
the interval. This is an integrating analog
to digital technique, which is useful for
reducing noise from the input signal. It
also allows very high resolution if long
enough sample times are used. Signal
isolation or long-distance transmission are
easily done on the pulse stream between
the interface and the Little Board.

The TSC9400CJ is a useful chip. Un
fortunately, Radio Shack no longer
carries it. It is made by Teledyne, and is
available from the address given at the end
of this article. A full range input requires
only lOuA of signal. This can save you a
stage of gain or two. For full O-S volt
range signals, the optional lOOK input
resistor limits the input current to the
specified maximum of SOuA. The
capacitor values are not at all critical, but

.the larger should be between three and ten
times the value of the smaller. Pin 8 is a
pulse output, while pin 10 is a square
wave at one half the same frequency.
Either is suitable for driving the Little
Board's CTC port.

The output of the TSC9400CJ chip is
a series of pulses or square waves at
varying frequencies. It can be isolated or
buffered as needed before connecting it to

The Computer Journal/Issue _28 9

~O AID LISTING

1 IDS-·ARTICLE.8AS V04 19 Februery 87·
2 DEFINT A-Z
5 N-32:DIM XllI0241.X2lI0241:ww-60:PRE-2
20 OEF FNBlXI-255 AND 256-X
30 GOSUB 10000
35 INPUT ·Would you like a tl.lng test·;AS:IF L£FTSlAS,ll-·Y· THEN GOSU8 5000
40 GOSUB 12000:GOTO 40
540 REM Display data In XI array.
545 REM R.-oves DC offset and scales data to the display sIze.
550 FOR Z-O TO It-!
560 IF ABSlXIlZll>B THEN B-ABSlXIlZll
570 IF XIlZl<C THEN e-XIlZl
580 NEXT Z
590 IF a-c THEM PRINT·dldn't receive any data, will try agaln·:RETURN
600 FOR z-o TO N-I
610 PRINT XllZI ;TABlB+WW"lXllZl-Cl/lB-C1 I;·0·
620 NEXT Z
623 PRINT-Max valu..·;B;·, .In value-·;C
625 RETURN
5000 REM TI.lng test
5010 III"UT ·What Is the Ideal sa.pllng rate·;RATE
5020 PRINT-Press any key and begin your tl.lng - should finish In 1 .Inute.·
5030 AS-INPUTSlIl
5040 Z-RATE·60
5050 FOR I-I TO Z:

OUT DARTBDAT, D:
WA IT DARTBCON ,DART.TXEIf'TY:
NEXT I

5060 PRINT ·AII done.·: III"UT ·How IIlIny seconds was that·; I
5070 PRINT ·Actual rat..·;ZlI.·Dlfferenee-·;lABSlRATE-lZllll/RATEl·lOO;·S·
5080 RETURN
10000 REM Special InItialization for usIng a->d
10020 CTC2-&H60:CTC3-&H70:CTC.CCW-&H57
10030 DARl1lCOIP&HBC: DARTBOAT-&H88: DART.TXEIf'TY-4
10040 RETURN
12000 REM load real data fro- a->d and process It
12010 GOSUB 13000
12030 GOSUB 540: GOTO 12000
13000 REM Read N sa-ples fro- a->d
13005 PRINT·Sa-pllng... •
13010 14-N-l :L-M+f'RE
13015 OUT CTC2.CTC.CCW
13020 FOR AwO TO L:

OUT CTC3.CTC.CCW:OUT CTC3,O:OUT CTC2.0:
OUT DARTBDAT, 0: WA IT DARTBCON ,DART.TXElf'TY:
OUT CTC2.CTC.CCW:OUT CTC2.0:
XI IAl-III"ICTC3l :X2IAI-III"ICTC2l:
NEXT

13025 PRINT·Ca-putlng••• •
13030 FOR A-O TO M:

XI IAl-256·FNBIXlIA+PREll+FNBlX2lA+PREll:X2IAlwQ:
NEXT A

13040 RETURN
15000 REM Goto this line for a contInuous display of the CTC Inputs.
15010 OUT CTC2,CTC.CCW:OUT CTC3.CTC.CCW:OUT CTC3.0:OUT CTC2.0:

OUT DARTBDAT ,O:WAI T DARTBCOH.DART .lXEM"TY:
OUT CTC2.CTC.CCW:OUT CTC2.0:
XllAl-INPlCTC31:X2lAl-INPICTC2l:
PRINT ·CTC2-·; IlI"lCTC2l ;·CTc-·; III"ICTC3l ;afiSl131;:
GOTO 15000

nel control command, and then a time
constant for each channel. This ap
plication uses the counter mode (without
interrupt'l tnggered by the rising edge of
the input sIgnal. A timing constant wordl
of zero IS specIfied. The two byte sequence
thaI needs to be sent to the channels used
is thus: S~7 (the reset command and chan
nel control word), $00 (the timing con
stant). Once the timing constant is writ
ten, the channel will respond to each low
to high transition of its trigger line
(CLK/TRG pin) by decrementing the
count. The reset command stops the
count in progress for the channel it is
issued to. A read of the channel at any
time returns the present value of the
count.

The software must compensate for
some of the limitations of the Z80 CTC
chip. For one thing, there is no explicit
means of synchronizing the startup or
reading of two channels. For a cascaded
system, the software should reset both
channels first, then write the more
significant channel's time constant. It can
then start the less significant channel. This
technique prevents the less significant
counter from counting down to zero and
triggering the more significant counter
during the initiallization sequence. Both
counters are thus effectively started off
from zero. Before reading the counters it
is necessary to stop the less significant one
from counting by issuing a reset com
mand. Since the counters count down
ward, the actual count is the two's com
plement of the 8 or 16 bit value read from
the counter's registers.

The Little Board serial port "B" is
used to time the sampling intervals. It
receives its timing signals from the CTC
channel I in timer mode. This method
sends a ..steady stream of nulls out of the
serial port. Fortunately, these do not up
set either my modem or floor-crawling
robot, the two peripherals that fight for
the use of the overworked "B" port.
Perhaps some day I will add several
DART's to one of the new expansion
boards and have enough ports for all.

The serial port could be left alone by
just using the CTC channel 1 for timing
and leaving the DART out of it. The only
problem is that a single CTC channel con
nected to a 2 megahertz signal (like CTCI
is) can only generate an interval of 32.768
ms or shorter. This is not long enough for
my application, although it may be for
yours. This also requires calculating the
proper parameters and programming the
CTC channel. Using the DART set up for
8 bits, I stop bit, no parity, and no han-

10

dshaking generates samples that are exac
tly one tenth the baud rate (30 samples per
second for 300 baud, etc.) The sampling
rate can then be easily set from the DOS
by using the "SET" command.

Using the DART this way is
reasonably straightforward. A character is
sent to the DART for transmission and
the counters started. The DART is polled
until it indicates it is again ready to send.
The data is then read from the CTC chan
nels and the cycle is repeated. The only
trick here is that the DART doubly buf
fers data to be transmitted. This means
that the first two intervals are not ac
curately timed because the DART is not
yet "saturated" with data. I obtain two
extra data samples and then discard the
first two to avoid this problem.

The driving software can be written
in any reasonable programming language.
Interpreted BASIC results in lesser per
formance, but will run up to about 30
samples per second. I use the BASIC
compiler, which is quite adequate for 960
samples per second and probably would
go quite a bit faster. The software in
cludes a timing test to see how well the
system can time intervals for a given rate.
This software is a subset of a larger
package that also provides signal
processing, Fourier analysis, signal
storage and retrival, and biofeedback in
formation on electrocardiograph (heart)
or electroencephalograph (brain) signals.

Two examples show both the
usefulness and problems with this sort of
integrating A-> D convertor. Figure I is a

The Computer Journal/Issue #28

,~

$45 MORROW :
~~~G~w.~

~ Over 15.000 of these singJ~~
board computers installed.

~ Free copy of the "MORROW
OWNERS REVIEW'. The national
maQaZ1ne devoted just to the
MORROW computer. ~.hp~t'''lm

~ We have over 2000 in stock
~ " mhz Z60A CPU. 64IC RAM

16/32IC ROM
~ 2 RS232 serial ports (300

19.2t baud with db25 con
nectors installed)

~ Centronics printer port ~:.iS8
~ Power requirements-

+12vdc -l2vdc +5vdc
~ Floppy disk controller up to "

4ri..... SSDD stallclar4. Rom for
DSDD "4tpt or 96tpi S IZ utra
illclu4i1l1 ._lIlble4 bios

~ CP/M btos.Wordstar.and Bazic
Included

~ Schematic. bios.asm. maint
manual and users guide
included

~ Copy program to read /write
non morrow formats such as
ICaypro. Osborne. Xerox. &. etc.

~ Opllonal rs232 terminal p'cb.

~
onitor pcb. and display

u S595~th PQrc~_.~ of C.!Q •••
,0 A"{Il"S from .....r.tAt ..nce J

Marshall Industries
9674 Telstar Avenue
EI Monte, California 91731

The cost was $4-$5 as of February
'87. Their toll-free order line is 1-800-522
0084 (outside of CA.).•

fragment of an EKG obtained at 240 sam
ples per second. High frequency noise is
present. Figure 2 is part of an EKG ob
tained at 30 samples per second. The
baseline noise has been averaged out and
the EKG signal is more clearly seen. The
signal is, however, slightly distorted by the
averaging process and unsuitable for
detailed medical interpretation.

The chief drawback to this method of
analog to digital conversion is its poor
performance at increasing frequencies. At
a 20 kilohertz sampling rate, say for
speech processing, you would barely get 2
bits of resolution. Of course, the converse
is also true, and resolution at low sam
pling rates can be as good as the 13 bits
the TSC9400CJ chip is capable of
delivering. Let me know of any interesting
applications you come up with!

The TSC9400CJ chip can be obtained
from:

0
0

0
0

0
0

0
0

0
0

0
0
0
0

•0

0
0

0
0

0
0

0

0
0

0
0

0
0
0
0
0

0
0
0
0

0
0

0
0

Figure 2

271 0n, a
116 I)

2"1 0
2.. 0
m
m
19} 0
2.. 0
]20

'21
)21 0
J)1 a,.,
,.2
']2,.,,..,,,
no
JOO 0
>0, 0

"'" 0
>01 0
>0, 0
}!01 0
>0' 0
>0, 0
lO' 0
109 0
.1ll 0
In 0
3IS 0
)20 0
"6 0

'" 016'16,
'22 0
)10 0

'"'""",,.,.,
"....
m,..,..
"")24 0
)24 0
JJI 0
321 0
)20 0
321 0
'2Z 0
)20 0
)19 0
}21 0
)20 0
)19 0
12J 0
.n' 0
'21 0

'51)80
,., 0

."2 0

'" 0'01
m

'",..
420."
492,.,
."...
'",.,n.,,.,.,
m,..
m

'"m

'"m
'"m
m,..
".'54
m
12I..,
'50
m,..
..3".
"354.
022...,.,
".
323
m
326
328
321
m
'22
m
)11

324
)2f

324,.,
310".3"'21...,..
""""'"...
'90
50'
639

""m
3'2 Q

"" 0345 0

--,~:-,--::""""-=..-...---.....-:-,:-1••~I.":"_-.-.:-,.-------63'l'IIJ

•o

0
0

0
0

0
0

0
0

0
0
0

0
0

0
0

0

o
o
o

o
o

o
o
o

o

••••••••
••o
o

o

•o
o

o
o
o

o

•••••••
o
••••

o
o

o
o
o

o

o•••

o
•••
••••o

•o

••

••

•••

o
o
•o

••o
o
•

o
o

•o

••

••

Figure 1

21
22
24
24
2.
29
24I.
"24
26

"26,.
21
29
20
29
29
lO
lO2.
n

""",.
"'""",.
42.....,......
"""54
54

""54.....,
"""2.
24

""22
22
2}

22
2.
17I.
2.I.I.
17
-_�----------------�

o Counts ,... s..,llftt Il'lfW.,.I. 56

10I.
12
12
12

"I.
"12
II
Il

""""Il
II
20
11

"I.,I.
"II
20

""12I.
Il

"11
11

""I.
"II
"Il
12
III.
"I.I.
"12

"I.
"2.
"..,.
",.
"II,
o
o,I.
"2'
24
24
2}
2}
2}

24
20

The Computer Journal/Issue 1128 11



The Hitachi HD64180
,

New Life for 8-bit Systems

by Jon Schneider

Part 2

---- --- ---------i-'----------

HWII KWIO Number of wait states

Figure I

DHA/WAIT Control Register (DCMTL : I/O Address • 32H)

2

4

5

6

2

2

3

4

o

o

o
'-1---1-------- ------.------

o

o

I I____ , •__.1- •

Nuaber of wait states
IWII IWI2 For external 1/0 For INTO acknowledge cycles

when LIR is low

Ke-ary <----) Me-ary
Ke-ary <---) I/O
Ke-ary <----) Kemory aapped I/O
Keaory address increaent, decreaent, no-change
Burst or Cycle steal Keaory <-) Ke-ary transfer.
OKA to or froa both ASCI channels

bit 7 6 5 4 3 2 I 0
HWII KWIO IWII IWIO OKSI OKSO DlKl DIMO

I I 3_____ 1-._-- _

000
------ ------ -----------------------

o I I

alter its 4 MSBs when you change its 4 LSBs for setting up the
DMA transfer. This will be covered later.

KWII - KWIO (bits 7-6)
HWI defines the wait states that will be inserted for CPU
and OKAC cycles that access aemory (including aeaory aapped
I/O). 0 to 3 wait states are autoaatically inserted
depending on the value progra-.ed. After a hardware reset
all of the HW bits are set to I.

IWII - IWIO (bits 5-4)
IWI defines the wait states that will be inserted for CPU
and OKA cycles that access external I/O (and interrupt
acknowledge cycles). I to 6 wait states are autoaatically
inserted depending on the value progra-.ed. After a hardware
reset all of the KW bits are set to I.

DKSI - DlKO (bits 3-0)
Utilized for setting up OKA tranafers. Will be covered
later.

DMA Controller
The Hitachi 64180 includes a very versatile two channel

DMA controller on the chip, and allows the following mode tran
sfers;

In tile first article of this two part series, the only advanced
feature of the Hitachi 64180 microprocessor to be addressed in
detail was memory management. This installment will cover
setting of wait states and RAM refresh rates, the use of the PR
Ts (Programmable Reload Timers), and will touch briefly on
the chips DMA (Direct Memory Access) capabilities.

Wait States and RAM Refresh
Since wait states and RAM refresh rates are usually the

province of hardware designers, and not a function that
programmers are accustomed to having control over, a brief
discussion of their purpose is in order.

Most of the RAM used in personal computers today is
dynamic RAM. and due to its design, it must be periodically ac
cessed or its contents are lost. In a Z-80 based system, the RAM
refresh is performed after every op-code fetch, and is solely
dependent on the system's clock speed. Since refreshing of
memory is handled by the microprocessor, as the refresh rate is
increased, the effective throughput of the chip decreases.

Wait states are merely the insertion of do-nothing T-states
between the placement of an address on the address bus, and the
reading or writing of data on the bus. These are added to insure
that slower devices (either 110 or slow memory) are not out-run
by a fast micro-processor.

Since the Hitachi processor was designed with the idea of
being able to add it to existing hardware, the capability to have
software control over RAM refresh rates and wait state
generation was included as an on-chip function. This allowed the
chip to run with just about any pre-existing hardware, and still
have the ability to run with newer and faster hardware without
having to spend too much time refreshing memory or adding to
many wait states.

Wait states for both 110 and memory are controlled by the
same register. The four MSBs of the register are used for wait
states, and the 4LSBs are used for setting up DMA transfers, as
shown in Figure I.

Regardless of the 110 wait state setting, all on chip ports are
accessed with 0 wait states. For on chip serial port data register
accesses and PRT access, 1 to 4wait states are added.

IT you are writing a BIOS, or the firmware for a 64180 based
controller, you will have to determine the optimum values for
wait state insertion, and initialize the register after the system
is powered on or reset. This is necessary, as when the chip is
reset, the values are set to the maximum number of wait states
possible. More than likely, at 6mhz and with 150 ns memory, you
will be able to run with 0 memory wait states. The number of 110
wait states is dependent on what type of I/O devices you will be
running.

IT you are writing applications programs, then you will have
no need to alter the DCNTL register, unless you are utilizing
DMA, in which case you will need to make sure that you do not

12 The Computer Journal/Issue '28



TIEl and TIEO - Tlmer Interrupt Enable channel 1 and channel 0
When TIEl (TIEO) is set to I, TIFI (TIFO) wl11 generate an
Interrupt request. If set to 0, the interrupt request Is
disabled. Durlng reset, TIEl and TIEO are reset to o.

TOCO and TOCI - Tlmer Output Control
These two blts control the use of the TOUT mentloned earller
and wll1 not be covered. Just leave thea at 0, whlch is how
they are after a reset.

TOEI and TOEO - Ti-er Down Count Enable
When TDEI (TOEO) Is set to I, downcountlng for THDRI (THDRO)
1s enabled for channell (channel 0). When set to 0, It 1s
disabled, and when dlsabled, the respectlve THDR can be
wrltten to. TOEI and TOEO are set to 0 on reset.

Timer Reload Registers
Both reload timers have 16 bit timer reload registers, ac

cessed as low-byte high-byte. When the Timer Data register
counts down to 0, it is automatically reloaded with the contents
of RLDRx. It is set to 0 on reset.

The value placed in this register is what determines the rate
at which interrupts will occur (if enabled). The programmer
will have to determine the proper value to place in this register
for the clock speed at which the system is running.

1/0 Address • OCR
1/0 Address • ODH
1/0 Address • 14H
I/O Address • ISH

I/O Address • OEH
I/O Address • OFH
1/0 Address • 16H
1/0 Address· 17H

RLDROL (Reload Reglster 0 Low) :
RLDROH (Reload Reglster 0 Hlgh) :
RLDROL (Reload Register I Low) :
RLDROH (Reload Reglster 1 Hlgh)

THDROL (Ti_r Data Register 0 Low)
THDROH (Ti..r Data Register 0 Higb)
THDROL (Ti..r Data Register 1 Low)
THDROH (Ti..r Data Register 181gb)

Both of the above bits are read-only. It may seem that they
wouldn't be of much use to the programmer, but it is VERY im
portant to understand their use. I didn't at first, and spent the
better part of a day trying to find out why my system died after
the PRT generated an interrupt.

After a PRT interrupt is generated, the interrupt must be
cleared by reading BOTH the Timer Control Register and either
byte of the appropriate Timer Data Register. You will see an
example of this in listing 3.

Timer Data Registers
Both reload timers also have 16 bit data registers. The value

in these registers is decremented every 20 clock cycles, and
upon reaching 0, is reloaded with the 16 bit value contained in
the reload register for that channel. The registers are set to 0 on
reset.

The registers are read/write, and can be read without stop
ping the timer. The proper method to read the data registers is
to read the lower byte first, then the higher byte. Anytime that
you read the lower byte, the higher byte value is stored in an in
ternal register, and a following higher byte read will read the
value from this internal register, not the actual high byte
register. This assures the data validity, as even if the register
rolls over before the high byte read, the value in the internal
register is correct.

To write to the registers, the timer must be stopped by using
the TDE bits of the Timer Control Register (covered earlier>.
Once the timer is stopped, the data can be read or written
without any concern as to the order accessed.

Programmable Reload Timers (PRTs)
The Hitachi 64180 has a two channel programmable reload

timer, and each channel has its own 16 bit reload register and 16
bit timer data register. Both channels can be programmed to
generate an interrupt request.

The incorporation of on-ehip timers facilitates the use of a
BIOS real time clock, device time-out routines, a flashing cur
sor, and various other real time routines. The only variable that
has to be taken into account is the speed 'of the processor, as the
timer data register is decremented once every 20 clock cycles.

In addition to the obvious uses, PRT channell has an output
pin dedicated to it (TOUT) that allows the Hitachi to perform
programmable output waveform generation. I will not cover its
use, as I have never found a need to use it, and doubt if many
other programmers would either.

To utilize the PRT, it is only necessary to set up two
registers, the Timer Control Register (TCR), and the Timer
Reload Register for the desired channel (RLDR).

DMA channel 0 allows all of the above modes. but DMA
channell only allows Memory < --> I/O transfers with ad
dress increment or decrement. Channel 0 also has a higher
priority than channell. Both channels signal the end of a tran
sfer by by pulling the TEND (Transfer END) line low, setting a
bit in a status register, and optiomally, generating an interrupt.

Since the DMA circuitry has access to the Hitachi's full ad
dress bus, the DMA transfers can be made to any address within
the 512kbyte address space without the necessity of altering any
of the bank selection registers. The only way that the 64k limit
applies is that the transfer length is limited to that size. That is
due to the fact that the byte count register is 16 bits wide.

A DMA byte transfer can occur every 6 clock cycles, and
wait states can be added to compensate for slow memory or I/O
devices. At a clock rate of 6 mhz, with 0 .vait states, transfers
can occur at the rate of 1megabyte per second.

There are 19 registers that pertain to DMA transfers, and
there are many rules to follow when setting them. It is beyond
the scope of this article to cover them all. It is an absolute
necessity to have the Hitachi manual as a reference when
programming for DMA transfers, and even then it is confusing.
For that reason, I have included two sample sections of code in
Listings 1and 2 that use DMA. You will need to have the Hitachi
manual in order to fully understand the code.

One instruction you may notice in the DMA code that has not
been covered previously is OTIMR (Out with Increment,
Repeat>. It is essentially the same as the zao OTIR instruction,
except it assures that all high order address lines are zero,
guaranteeing access to the Hitachi's internal ports. The same
similarity exists between OTDMR and OTDR, OTIM and OUTI,
and OTDM and OUTDo

bit 7 6 5 4 3 2 1 0
TIFI TIFO TIEl TIEO TOCI TOCO TOEI TOEO

TIFI - Timer Interrupt Flag channel 1
When the ti-er data register for the channel 1 (TORI)
decrements to 0, TIFI is set to 1. If the ti-er
interrupt enable is set to 1 for that channel, an interrupt
Is generated. TIFI Is reset to 0 when both TCR and
elther byte of THDRI Is read, or on reset.

Ti~r Control Register (TCH : 1/0 Address • 10H)

TIFO - Timer Interrupt Flag channel 0
When the tlmer data register for the channel 0 (TORO)
decrements to 0, TIFO Is set to 1. If the tlmer
Interrupt enable Is set to 1 for that channel, an interrupt
Is generated. TIFO Is reset to 0 when both TCR and
either byte of THDRO Is read, or on reset.

Now that you understand the use of the three registers, it is
a fairly easy step to see how to utilize them in a BIOS. Let us
assume that you want to set up a routine in the BIOS that will
allow the use of a flashing cursor, as shown in listing 3.

The Computer Journal/Issue N28 13



..... Listing 1 LIsting 2

This code serves 8S an example of DMA tr8nsfer with the 64180
It Is a sm811 section of the low level disk drivers from a BIOS
modified for a 64180 add-on card.
It uses the Memory ---> I/O mode on channel 1
Note th8t the DCNTL register Is modified without altering the
4 most slgnlflc8nt bits, as mentioned In the section on setting
up walt st8tes.

This code serves as an example of DMA tr8nsfer with the 64180
It Is a sma I I section of the cold boot routine from 8 BIOS
modified for 8 641S0 add-on card. It simply copies the CCP from
the system bank to the memory beginning at 256k for use by the
warm boot routine

It uses the Memory ---> Memory burst mode on ch8nnel 0

called 8S sub-routine

Write 8 sector

continues with error checking

; --------------
fdwtsc: push hi ; S8ve buffer 8ddress

InO a, (dcnt I) ; Get DCNTL v81ue
res 1,8
outo (dcntl),a ; Set for memory --> I/O
call dmaset ; Set up DMA
Id b,080h ; Set up the write command
call fdset ; St8rt the c0Mm8nd
dw fdwts2 ; Termination address for NMI

fdwtsl: Jr fdwtsl ; Walt for NMI
fdwts2: pop hi ; Restore buffer address

and Ofch : Any errors?

Id a,SOh ; Set up CBAR
outo (cbar),a

Id hi, dlllatb I ; Base to HL
Id bc,S*256+s8rOI ; S bytes st8rtlng 8t SAROL~

otlmr : Out to ports

Id a,OOOOOOIOb ; me.. to 1Il8Ill, Increment, burst mode
outO (dmode) ,a

Id 8,40h ; en8ble channel 0 DMA
outO (dstat),8

Jp wboot

dmatbl:
d. ccp ; Source address
db 0 ; System bank
d. 0 ; Starting RAM disk address
db 4 ; RAM disk b8se bank
d. SOOh ; 2k

LIsting 3

The following sections of code deMOnstrate the use of the
Hitachi PRT's. The first section of code Is frOlW the cold boot
routine of a BIOS modified for the 64180, and demonstrates how to
Inltl811ze the PRT.

creset: Id hl,lnttbl ; Establish Interrupt vector
Id a,h
I d I,a
outO (11),1
Id hl,(reloadO) ; Initialize timer 0
outo ~rldrOI),1

outO (rldrOh),h
Id a,OOOIOOOlb ; Enable Interrupt and down count
outo <tcr) , a
;contlnues with cold boot routine

m8r11, marlh
m8r1b
lar1

Fast refresh

Dluble DMA
Beginning of DMA control block
8 bytes, ch8nnel 1
8 bytes to 8 ports

Enable DMA
a,80h
(dstat),a

DMA control block

Set up for DMA
; --------------
dMaset: Id a,Oclh

outO (rcr) ,8
xor 8
outO (dst8t),a
Id hl,dmatbl
Id bc,8*256+M8rll
otlmr
Id
outo
ret

; -----------------
dMatbl dw hstbuf

db 0
dw fdcdat
db 0

bytes dw 512

-l
::r
CD

~
3
't:l
c:

~
C"
o
c:
3
!!?-iii
(II
c:
CD

~
CD

$:, ,. • #, .. "



Force a 32 byte boundry for Interrupt vector toble

;the following OW Is locoted In the dato orea of the BIOS

This next section of code demonstrotes the handellng of an
Interrupt generated by the PRT. The Interrupt vector toble Is
olso shown. This routine uses the PRT Interrupt to supply 0
floshlng cursor.

org ($ ond OffeOhl + 20h

Inttbl: dw Inti ; Not supported
dw Int2 ; Not supported
dw InttlmO ; Timer channel 0
dw Inttlml ; Timer chonnel I
dw IntdmoO ; DMA channel 0
dw Intdmal ; DMA channel I
dw Intcslo ; CSI/O
dw IntosclO ; ASCI channel 0
dw Intascll : ASC I chonne I I

Interrupts OK now

Store It
Reverse cursor If at 0
Restore registers

(counter) ,0
z,bllnk
of
bc
de
hi

You must first determine what channel to utilize. I chose to
use channel 0, as that seems to be the one utilized by most 64180
BlOSs, and that leaves channel 1 free for applications
programs. Then you determine the frequency at which you want
the interrupts t<i occur, and determine the proper value to load
into the reload register. Then load that value into the reload
register. You can see how that is done in listing 3.

You then set up the Timer Control Register for that channel.

TIF1 - TIFO (Doesn't .atter. read only)
TIEl • 0 (OFF, won't be using it)
TIEO • 1 (ON, we want interrupts for this channel)
TOC1 - TOCO • 0 (OFF. won't be using)
TDE1 • 0 (OFF. won't be using)
TDEO • 1 (ON. we wsnt downcounting)

Id
call
pop
pop
pop
pop
el
ret

; Timer down count value30720

Odh,00h,07h
'Interrupt Error',O

Intmsg: db
db

reloodO:dw

-i
=r
CD

&>
3

"C
C

iii...
L
o
c
3
!!.

i:
c
CD,.
~

; The following Interrupts are not supported 00010001b - 11K· Value to output to TCR

...
CII

; ------------------------------------------
Inti:
Int2:
Inttlml:
IntdlllOO:
IntdlllOl:
Intcslo:
InhsclO:
Inhscll:

Interr: Id hl,lntmsg Point to error messoge
call dlsply Print It
Jp OOOOh And warm boot

InttlmO:push hi ; Sove registers
push de
push bc
push of
InO a,(tcr) ; Clear the Interrupt
InO 0, (tlidrO I)
InO 0, ( tlldrOh )
dl No Interrupts
Id a, (counter) Get the counter
dec a Knock down I

Once the above value is output to the TCR, the downcounting
will begin, and the interrupts will be generated at the specified
intervals. It assumes that you have already set up your in
terrupt vectors and interrupt handling routine. The code in
Listing 3gives an example of how to set up the PRTs and how to
handle interrupts generated.

I hope that these two articles have given you some idea of
the power and versatility of the Hitachi 64180, and perhaps
helped you in utilizing some of its more advanced features. I did
not cover some of its features, mainly the use of its serial ports,
as they could not easily be covered in one or two articles, and
you really have to have the Hitachi manual readily available to
code for their usage. •



~

:p::=::a ==
£~m-,t_,.,f'r

IIIIIIII
'ill

,~

PCLINKSTO
VMEJ 796 AND STD BUS
Use your IBM PC for immediate access to the
growing world of popular bus based products.

With the Link, the PC becomes a cost effective bus
controller. The wide range PC support hardware
and software make it a logical choice for expan
sion of present bus based systems or exploration
of a target bus in new system designs.

The PC can operate important features of the
target system bus directly for stand alone control
or it can share the bus with other processors to
become a powerful tool for bus development.

The PC can be used as a host or fault tolerant
backup to bus CPU's in a multiprocessing environ
ment. System-to-system interrupts are supported.
The PC's DMA capability can be used for high
speed intersystem data transfers.

Link operation is via direct parallel data path. Par
ity and optional optical isolation allow remote
operation of systems at distances up to 50 feet.
Any language or operating system can be used.
The Link operates with the IBM PC, XT, AT, and
compatibles.

Prices start at $845 for VME, $725 for 796 and $425
for STD Links. Delivery is from stock.

Ul.::rRPr- -... ~

Lir~K
INTEANATlONAL

1091 Airport Road
Minden, Nevada 89423
(702) 782-9758

PC. XT. AT are trademarks 01 IBM CorporaltOn



ZSIG Corner

by Jay Sage, ZS IG Software Librarian

As the ZCPR3 user register number 6 is incremented using the
'P'-for-plus option, its new value is displayed on the screen.

If we wanted to make the alias operate recursively, our first
instinct, as described in my previous column, would be to ex
pand it to the following:

F or this issue I will finally get to my long promised
discussion of techniques for customizing the Z-COM automatic
installation version of the Z-System. Before turning to the main
subject, however, there are two other items I would like to
cover. One is some follow-on discussion to the material I presen
ted last time on recursive aliases; the other is a description of
the latest ZSIG releases.

As I explained last time, the trouble with this is that each time
we run through the loop by answering the input prompt affir
matively we go one IF level deeper and accumulate another FI
on the end of the command line. Eventually either the command
line becomes too long or, more likely, we exceed the allowed
eight levels of IF nesting.

Dreas's idea is based on turning this alias aroWld so that
there is no FI on the end to accumulate. He permutes it to the
beginning of the script and writes the alias this way:

More on Recursive Aliases
Art Carlson forwarded to me a letter he received from

Dreas Nielsen in response to my discussion of recursive alias
techniques using VALIAS and ARUNZ. Dreas, well known in the
ZCPR community for his excellent shell utility programs,
GETVAR and RESOLYE, took me to task for doing something
the hard (and not quite correct) way when there was a not-too
hard and completely correct way to do it. And he proved it by of
fering a marvelous technique for 'recursing' aliases without any
of the problems I warned about with my technique. To me this is
a wonderful example of the richness of ZCPR3. No matter how
thoroughly one knows it, there are always significant new
techniques and applications to be discovered. The learning and
excitement never ends!

We will illustrate the technique using a simple example
based on the following script that is designed to display a
message on the screen showing how many times it has been run
already. The script is:

IF TRUE
RECURSE2
PI

FI
ECHO THIS IS LOOP NUMBER
REG PI>
ECHO DO IT AGAIN?
IF IN
RECURSE2

alias RECURSE:

alias RECURSE2:

The "IF TRUE" command will push us one IF level deeper and
put us in a 'true' state..(This, by the way, is the first time that I
have ever seen a use for the "TRUE" option with the IF com
mand. If, like me, you never implemented that option because
you could not figure out what on earth it could possibly be used
for, you can substitute any other option that is guaranteed to
return a 'true' state, such as "IF NULL" with nothing after it or
"IF A=A"). The RECURSE2 alias will now run as we described
earlier, and when the recursion is terminated by a negative an
swer, the FI in RECURSE will terminate the resulting 'false' IF
state and return us to the original IF level that we were at when
RECURSE was invoked.

One has to stretch things a bit to come up with any disadvan
tages to this technique. The best I can do is the following two
minor points. First, two aliases are required to get things star
ted, and this will slow things down a bit, especially on a floppy
disk system. Secondly, the technique, while simple in principle,
may not be easy to remember when one wants to set up a quick
recursive alias, as in the application I described in my last ar
ticle. The VALIAS/ARUNZ-type recursive alias may still be
useful in such a case.

If you are a purist and have a strong, perhaps even
irresistible, urge to do things right (and especially if you have a
RAM disk so that you can afford to indulge such compulsions>,
Dreas's technique can be nicely automated by creating the
following two slightly more complex and generalized aliases:

If this alias is invoked with a 'true' IF level already in effect,
this will work just fine. The alias will drop one IF level lower at
the FI command, do its main work, and return to the original IF
level with the "IF IN" prompt. If the answer is affirmative, we
will be back in the very same IF state we were in when the alias
was invoked the first time. The alias will be re-invoked, and the
whole operation will repeat. On the other hand, if the answer to
the prompt is negative, the alias will stop running, and we will
fall out the bottom at the same IF level as we entered originally
but in the 'false' state.

To deal with the need to enter one IF level higher and to
terminate the 'false' IF state at the end, we simply call the
above alias from another alias with the following script:

ECHO THIS IS LOOP NUMBER
REG P6

ECHO THIS IS LOOP NUMBER
REG P6
ECHO DO IT AGAIN?
IF IN
MANYLOOP
PI

a11as ONELOOP:

a11as ItANYLOOP:

The Computer Journal/Issue N28 17



all80 UCl:RSE IF NULL $1
ECHO SYNTAX: $0 ALIASNAME PARAMETERS
ELSE
RECURSE2 $*
Fl

Figure 1

Step IF state Co...nd Buffer Contents

RECURSE WORK HYPROG;pending

aU.. ILCURSE2 Fl
$*
ECHO RUN "$1" AGAIN?
IF IN
$0 $* F•••

IF NULL WORK HYPROG;ECHO SYNTAX: RECURSE
ALlASNAIIE PAIlAIIETERS:ELSE:RECURSE2 WORK
HYPROG:FI : pending

ELSE:RECURSE2 WORK HYPROG:FI;pending

Now suppose we have our edit/assemble/link alias as follows
(where it, in turn. calls on the SYSLINK alias to perform the
linkage with the libraries):

SAGE MICROSYSTEMS EAST
Seiling & Supporting

The Best In 8·Blt Softwlre

If we enter the command "RECURSE" all by itself, we will
get the message "SYNTAX: RECURSE ALIASNAME
PARAMETERS." If we enter the command "RECURSE WORK
MYPROG, " the "IF NULL" test in RECURSE will be 'false' but
will be toggled 'true' by the ELSE command. Then RECURSE2
will be invoked. and the command line and IF status will
progress as shown in Figure 1. The ....." in the IF states
designates any IF levels in effect at the time that RECURSE
was called. Similarly, the command text 'pending' designates
any command-line text following the invocation of RECURSE.

The figure does not show the operation of every command.
The edit/assemble/syslink sequences are not shown in detail.

• Plu·Perfect Systems
- Backgrounder II: switch between two or three running tasks

under CP/M ($75)
- DateStamper: stamp your CP/M files with creation, modification,

and access times ($49)
• Ecllelon (Z·System Softwlre)

- ZCOM: automatically installing lull Z-System ($70 basic package, or
$119 with all utilities on disk)

- ZRDOS: enhanced disk operating system, automatic disk logging
and backup ($59.50)

- DSD: the incredible Dynamic Screen Debugger lets you really
see programs run ($130)

• SLR Systems (Tile Ultlmlte Assembly lIngulge Tools)
- Assemblers: Z80ASM (Z80), SLR180 (HD64180), SLRMAC (8080),

and SLR085 (8085)
- Linker: SLRNK
• Memory-based versions ($50)
- Virtual memory versions ($195)

• HlglllOwl (Advanced Telecommunications)
• MEX-Plus: automated modem operation ($60)
• Terminal Emulators: VT100, TVI925, DG100 ($30)

Same·day shipping of most products with modem download and support
available. Shipping and handling $4 per order. Specify format.
Check, VISA, or MasterCard.

Sage Mlcrosystems East
1435 Centre St., Newton, MA 02159

Voice: 617·965-3552 (9:00 a.m. ·11:15 p.m.)
Modem: 617·965-7259 (24 hr., 300/1200/2400 bps,

password =DDT, on PC·Pursuit)

RECURSE2 WORK HYPROG:FI;pending

FI:WORK HYPROG:ECHO RUN ''WORK'' AGAIN?:
IF IN:iECURSE2 WORK HYPROG:FI:pending

pending

ECHO RUN "WORK" AGAIN?:IF IN:RECURSE2 WORK
MYPROG:FI:pending

Fl:pending

EDIT HYPROG.Z80:Z80ASM HYPROG/R;IF ~RROR:

SYSLlNJ: HYPIlOG:Fl:ECHO RUN "WORK" AGAIN?:
IF IN:IlECURSE2 WORK KYPROG:FI:pending

RECURSE2 WORK HYPROG:FI:pending

RECURSE2 WORK HYPROG; FI ; pending

WORK HYPROG: ECHO RUN "WORK" AGAIN?: IF IN
RECURSE2 WORK MYPROG;FI;pending

ECHO RUN ''WORK'' AGAIN?;IF IN:IlECURSE2 WORK
MYPROG:FI:pending

T•••

T•••

Foo.

Foo.

Too.9

8

II

12

10

13

A Z-Letters Feature
Thanking Dreas Nielsen for his letter reminds me that Art

Carlson and I would like very much to start up a Z-Letters
feature in TCJ, a kind of letters-to-the-editor section specializing
in Z·System questions, comments, discussion, and ideas. I am
willing to handle answering or otherwise responding to those let
ters, but I will depend on you readers to send them in. And rest
assured that we are not looking only for letters like Dreas's con·
taining brilliant suggestions. A good set of simpleminded
questions would be quite well appreciated, thank you. They
would help us a great deal in learning what aspects of Z-System
are confusing to users so that we can try to clarify them.

Between steps 8 and 9 we assume that the "IF IN" prompt was
answered with a 'Y'. This brings us at step 9 back to the exact
state we were in at step 4, and steps 4 through 8 will be repeated
over and over so long as the "IF IN" prompt is answered affir·
matively.

Between steps 10 and 11 we assume that the "IF lNG'"
prompt was answered with 'N', so we get the state shown in step
11. Since the current IF state is 'false', the command "RECUR·
SE2 WORK MYPROG" is flushed, leaving us at step 12. The FI
command terminates the 'false' IF and drops the flow state one
level lower. Any pending commands that were on the command
line after the invocation of RECURSE are now free to run at step
13.

I just tested out these aliases on my SBI80 by putting them
into my ALIAS.CMD file, which lives on the RAM disk. The
scripts had to be altered slightlY,with all invocations of
RECURSE2 from within RECURSE and RECURSE2 being
replaced by "ARUNZ RECURSE2 ..... or "ARUNZ $0 ...... They
worked like an absolute charm. Thank you Dreas Nielsen! ! !

Evolution of the co....nd line and IF states 88 the
operation of the c_nd ''RECURSE WORK HYPROG" unfolds.

EDIT $1.Z80
Z80ASK $1/R
IF ~RROR

SYSLINK $1
Fl

aUaa WORK

18 The Computer Journal/Issue #28



:\few ZSIG Releases
We have quite a few excellent new programs to release on

ZSIG diskettes this month. I have not yet finalized exactly what
will be included on release diskettes #2 and 1/3, but I don't want to
pass up this opportunity to publicize them.

First of all, I am very happy to report that all the programs
I proposed two issues back have now been written, and I will
describe them first.

FCP10.LBR- This is the new flow control package (FCP)
that I wrote with valuable assistance from Howard Goldstein
(New Haven, CT). This program was described in some detail in
the last column, so I will not say too much about it here. The two
most important innovations are 1) the addition of AND and OR
t::ommands and 2) the FCP's ability to load and run IF.COM in
high memory where'it will not interfere with data in the begin
ning of the transient program area at 100H.

COMIF10.LBR- This is the companion transient IF
processor that is intended to replace IF.COM. Also described
last time, it offers an enormous number of new test conditions
and syntax forms. This one was also written by me together with
Howard Goldstein.

SETPATHl.LBR- This is an extended version of the
original PATH command. It allows one optionally to add and
remove path elements from the beginning or the end of the
existing path. The path display is also improved. Robert
Demrow, a fellow member of the Boston Computer Society
CP/M Group wrote this one.

EDlTND.LBR- Al Hawley (Z-Node 1/3 in Los Angeles)
really went all out with tools to work with the named directory
register (NDR). EDITND lets one edit the names directly in the
NDR. Names and/or passwords can be added, deleted, and
changed.

SAVNDR.LBR- After you've edited the NOR, this program
lets you save the results to an NDR file. Again by AI Hawley.

LOADND12.LBR- The last in the Hawley set, this program
can automatically update the names in the NOR using either the
special file name system in LDSK or by loading an NDR file
whose names are applied to the current floppy disk only.

The next ZSIG release will also include the following
programs.

ZPATCHll.LBR-This is another masterpiece from Steve
Cohen (Chicago, author of 'W', the wildcard shell, on the first
ZSIG diskette). It is by far the best file patcher I have ever
seen-a real joy to use. Steve sure is clever when it comes to
shells! Who would have thought to make a file patcher into a
shell? But this way one can run a command from inside ZPAT·
CH and then return to one's exact place to continue working. The
'X' command in ZPATCH automatically runs the file one is
currently patching (provided it is a COM file) so that one can see
the effect of the changes. Marvelous!

MEX2Z.LBR- This is yet another brainstorm of NAOG
chief Bruce Morgen (who has quite a stormy brain>. MEX2Z
and my adaptation of it for MEX-Plus, MEX+2Z, give the MEX
communication programs the ability to 'shell', that is, to run a
Z-System command apparently from within MEX. For exam
ple, if you enter the MEX command line 'CPM;CRUNCH
FN.FT', you will exit from MEX, the file will be crunched, and
then you go right back into MEX. This is especially handy when
you are trying to debug a MEX script. Bruce picked up on the
very clever trick introduced by Ted Emigh in FINDERR,
namely, running a program that examines information left
behind in memory by the program that ran before it. In this case

The Computer Journal/Issue #28

it is the MEX command line buffer that is picked up. Even if you
don't use MEX, it is worth looking at these programs just for
their educational value.

FF10.LBR- I finally decided to do something about the
shortcomings of FINDF, the utility for determining where files
are located in your system. FF has a 16-bit configuration word
that can be patched (roll out ZPATCH!) to define which drives
should be searched by default (this is particularly useful when
your constellation of drives has a hole in it, such as A, B, C, and
F). You can override the default drive list by specifying a set of
drives to scan on the command line. A whole list of file
specifications can be given, and each one is automatically wild
carded, saving the user a lot of typing. If you want to find all
programs starting with "SD", just enter "FF SD". The "SD"
turns into "SD-. -" automatically. Similarly, "FF .LBR" will
find all library files. "FF SD,.LBR" will find both.

PPIP15.LBR- This is the next step in the evolution of PPIP
(PPIP14 is on ZSIG diskette #1). The main addition is support
for DateStamper time and date stamping. Having fallen in love
with DateStamper, I just had to have some file copying tools
that would preserve the time and date information, so I added
that capability to PPIP and to ZFILER.

ERRSETll.LBR- This little tool lets you either display the
current or directly enter a new error handler command line.
Strictly speaking, error handling in ZCPR3 is not performed by
loading an error handling program but by executing an error
handling command line. This command line is stored in a 16
byte string in the message buffer. When an error handler is in
stalled by invoking its name manually from the command line,
it writes only its name alone into that buffer. ERRSET lets you
enter a complete error command line, such as A15: VERROR.
By including an explicit DU: or DIR: form, the error handler
will be found and loaded faster. On the other hand, ERRSET will
let you enter the name of a nonexistent error handler, so watch
out. Power has its price. Written by yours truly.

Customizing Z-COM
We now turn to the piece-de-resistance for this article-a

discussion of techniques for customizing Echelon's
automatically installing Z-System package known as Z-COM.
This will be the first of a two-part series. This time I will cover
the more elementary aspects of the subject, those modifications
that can be made by changing only data structures in the Z-COM
files. Next time I will delve into customization techniques that
involve serious hacking (such as modifying the Z-COM code it
self) .

I will begin with an overview of what Z-COM is, the
philosophy behind it, the procedure for installing it on a par
ticular computer, and how one uses it to create a Z-System
automatically. Then I will give an elementary discussion of how
it works and the structure of the COM file that magically tran
sforms one's ordinary CP/M machine into a 'Z' machine. Next I
will show you how to make some simple patches that eliminate
the initialization operations that are performed by the startup
file and make Z-COM come up ready to go instantly. This in
cludes setting the wheel byte, defining the symbolic command
search path, putting in the terminal capability descriptor
(TCAP) for the user's terminal, installing the user's named
directories, installing an external error handler, and even set
ting up an initial shell.

With those techniques mastered, we can then go on to make
changes to the system modules. The simplest of these is
replacing the standard ZRDOS that comes with Z-COM with the

19



latest-and-greatest Public-ZRDOS-Plus version 1.7. Slightly
more complex is the replacement of the environment descriptor
(ENV) and the two command modules: the RCP (resident
command package) and the FCP (flow cpntrol package). For
these changes we have to edit some configuration files, assem
ble new code modules, and install the new modules into the Z
COM file. By this point you will be ready to generate and install
a new version of the ZCPR3 command processor, an operation
that requires one important extra step (a simple one, but one
that must not be overlooked).

WhyZ-COM
Consider this situation. The Z-System is a wonderful

replacement for CP1M, one that greatly enhances the utility and
ease of operation of an B-bit Z8O-compatible computer. I can't
understand why anyone would not enjoy and benefit from its
features and capabilities. However, installing it in the conven
tional fashion required changing the BIOS <Basic Input Output
System), the hardware-dependent part of the operating system.
Unfortunately, many (actually most) manufacturers consider
their BIOS to be proprietary (or embarrassingly poorly writ
ten), and they refuse to release the source code. And even if they
do make it available, perhaps for an extra fee, what if you do not
know how to make the required changes to support the ZCPR3
command processor? Well, enter Z-COM.

Z-COM was the brilliant conception of Joe Wright, the
nation's preeminent BIOS writer (author of the BIOSes for the
Ampro Little Board, Micromint SBlBO, and the soon-ta-be
available ON! computer from Oneac). With Z-COM one does not
need the BIOS source code because there are no changes to
make in it. One doesn't even need MOVCPM. Z-COM runs on
almost any standard CP1M 2.2 system, converting itin situ to a
Z-System. There are a few CP1M 2.2 computers on which Z-COM
will not work (usually because at least some part of their
memory space operates in a funny way), but the great majority
will. For those of you with CP/M version 3 (aka CP/M-Plus-a
real misnomer in my opinion), I'm afraid you are out of luck.
CP1M 3 is fundamentally different from CP1M 2.2, and no one
has yet been able to concoct magic powerful enough to tran
sform it into a Z-System.

I hope my discussion here will inspire some of you to pur
chase Z-COM. If it does, then see the ads in TCJ by Sage
Microsystems East and Echelon for more information. I per
sonally think that a modified Z-COM is the best way to im
plement Z-System, because, as we will see by the end of this
series of articles, it gives one far greater flexibility than with a
manually installed system.

Installing Z-COM
Here is a brief description of how one gets Z-COM running

on one's system. The standard procedure goes like this. Take a
freshly formatted disk, 'sysgen' the CP/M 2.2 operating system
to it, copy onto it all the files on the Z-COM release disk, put this
disk into drive A, and reboot the system either with the reset
button or by entering control-c. Now enter the command "SUB
ZCCOM". This starts a batch operation, and you can now sit
back, relax, and watch your computer do all the work. Toward
the end of the process, which takes a couple of minutes, a
program called TCSELECT will run and ask you to choose your
terminal from a large menu. The result will be a file calied
MYTERM.Z3T containing information about your terminal that
permits Z-System programs to perform screen operations
without installation.

20

What's Going On During Installation
In the first part of the installation process, the Z-COM

system creation program ZCLD.COM determines the memory
address at which your BIOS operates and generates a
corresponding Z-System. To do this, it reads in a number of
special relocatable files (most with file type SPR, which stands
for system page relocatable) and produces four new files:
ZC.COM, ZCX.COM, ZC.ENV, and ZC.CP. The first file, whose
operation we will describe in detail below, is the one that tran
sforms the vanilla CP/M system to the amaretto-double
chocolate almond Z-System with jimmies (if you don't know
what jimmies are, ask someone from Boston).

The second file, ZCX.COM, is a program that transforms
you back. Why, you ask, would one ever go back to vanilla after
experiencing the ecstasy of amaretto-double-chocolate-almond?
Well, Z-System does have one significant drawback. You don't
get all those great features for free. They cost a considerable
chunk of TPA (transient program area)-5.5K in the case of Z
COM (though we will see next time how to reduce this if you are
willing to forego some of the features). The smaller TPA has
almost never caused any problem with the programs I use, but
some people do have problems, and it is nice to know that a sim
ple "zcx" command will bring back the old CP1M with its full
sized TPA. Next time I will explain how we can even change to a
different Z-COM system with a larger TPA.

The third file, ZC.ENV, is the environment descriptor file
for the system that ZCLD created. It is automatically included
in ZC.COM, so it does not have to be loaded using LDR, but it is
used by Z3INS to install the environment information into the
utilities.

The last file, ZC.CP, does not even appear in a directory
listing; it is hidden up in user area 15, out of harm's way. The
user is not normally concerned with this file, though if you want
to create another Z-COM system disk, you have to remember to
copy it, as well as the others mentioned above, to the new disket
te. We will discuss its purpose later.

How ZC.COM Works
As we said above, ZC.COM is the program that transforms

your mundane CP1M system into an exciting and powerful Z
System. How does it do it? Several simple principles are in
volved.

ZC.COM is basically a loader program. The file itself con
sists of two parts. The first page of code (lOOH to IFFH) is the
loader code. The second part (200H to 2DFFH) is the memory
image of a Z-System that is copied into place by the loader. The
process is like the 'big bang' theory of creation-the whole Z
System just appears complete in one operation!

The memory map of the ZCOM-System generated for my
BigBoard I computer, on which I performed these experiments,
is shown in Figure 2. Its real CP1M BIOS is at ESOOH. The Z
System addresses were determined by running the utility
SHOW.COM after Z-COM was loaded. The corresponding ad
dresses in the ZC.COM file were obtained by inspecting it with a
debugger. Once a few addresses (like the RCP and FCP, which
have obvious headers), were determined, the rest was obvious.
The ZC.COM system image is at a constant offset from the real
system. In this example, that offset is BAOOH. If Z-COM is in
stalled on a different system, the real system addresses and the
offset value will be different, but the addresses of the system
segments in the ZC.COM image will be the same. In general, the
offset between the corresponding addresses will be 2EOOH less
that the address of the native BIOS.

The Computer Journal/Issue #28



Figure Z

Systea Coaponent

CPR
ZRDOS
Virtual BIOS
Named 0irectory Register
Shell Stack
Z3 Message Buf fer
External FCB
PATH
Wheel Byte
Envi ronment Deser1 ptor
rCAP
Hultiple COlllllland Line
External Stack
Resident Co....nd Package
Flow Cont rol Package
I/O Package

ZC.COH Addres.

0200 - 09FF
OAOO - IIFF
~800 - 19FF
lAOO - lMF
IBOO - IB1F
IB8U - IBCF
IBOO - IBF3
IBF4 - lBFE
lBFF - IBFF
lCOO - lC1F
lC80 - lCFF
1000 - lOCF
1O00 - 10FF
IEOO - 25FF
2600 - 27FF
2800 - 20FF

System Address

BCOO - C3FF
C4UO - OlFF
0200 - 03FF
0400 - 04H
0500 - 051F
0580 - 05CF
0500 - OSF3
OSF4 - OSH
OSH - OSH
0600 - OolF
0680 - "DoFF
0700 - OICF
DIDO - OIH
0800 - OFFF
EOOO - EIH
E200 - E1H

• Z Best Sellers •
zao Turbo Modula-2 (1 disk) $69.95
The best high-level language development system for your lBO
compatible computer. Created by Borland International. High pertor
mance. With many advanced fealures: ,ncludes editor. compiler.
linker. 552 page manual. and more.

Z-COM (5 disks) $119.00
Easy aUla-installation complete l-System for virtually any lBO
computer presently running CPlM 2.2. In minutes you can be runOing
ZCPR3 and lADOS on your machine. enjoying the vast benefits.
Includes 80. utllity programs and ZCPR3: The Manual.

Z-Tools (4 disks) $150.00
A bundle of software lools Individually pnced at $260 total. Includes
the ZAS Macro Assembler. ZDM debuggers, AEVAS4 disassembler.
and ITOZ'ZTOI source code converters. HD641BO support.

Addresses of syate. co.ponents in the ZC.COK file and in
the exaaple system. for which it was generated.

How does this system function? If you are familiar with Z
systems. you probably recognize all of the system components
above except for the one called 'virtual BIOS'. That is where the
key to Z-COM lies. Remember, we needed a BIOS that would run
below the Z buffers, but we had no way to relocate the actual
BIOS. So instead we create a virtual BIOS-a block of code
structured just like a real BIOS. It has a table of jump instruc
tions, one after the other, that perform the required BIOS fun
ctions: CBOOT, WBOOT, CONST, CONIN, CONOUT, LIST, and
so on. How does this virtual BIOS actually carry out those fun
ctions without knowing anything about the system hardware?
Easy! It simply jumps to the corresponding entry points in the
real BIOS!

Well, it actually is not quite that easy. There are a few
special details that have to be taken care of. Most of the fun
ctions are performed as described above, but there are some
important exceptions. The most important one is the WBOOT, or
warm boot, function. Normally when a warm boot is performed,
the CPR (and often the BDOS as well> is reloaded from the
system tracks of the A diskette. If that were allowed to happen
here, goodbye Z-System! ZC.COM would only work until the fir
st warm boot occurred, and then we would have to run it again.
Not very satisfactory!

To prevent that from happening and to keep Z-COM run
ning, the virtual BIOS 'traps' warm boot calls. That is a fancy
way of saying that instead of simply passing the call to the real
BIOS it does the work itself. What does it do? Well, it has to
reload the ZCPR3 command processor to the proper address,
BCOOH in this example. Since the ZCPR command processor
does not reside on the system tracks, we have to get it from
somewhere else. Joe Wright could have gotten it from records 2
through 17 in ZC.COM, but he chose instead to maintain a
separate file with just the image of the command processor.
Remember the file ZC.CP that we mentioned earlier, the one
stashed away in A15: ? That's it.

Although I don't know of any reason why CHOOT, the cold
boot routine, would ever be called once the computer was
initially booted up, the CBOOT routine is also trapped by the vir
tual BIOS and vectored (another fancy word) to the same code
as the virtual warm boot.

In Echelon's simpler auto-install package Z3-DOT-COM,
which does not have support for Input/Output Packages (lOPs),
the story would now be complete. The lOP, however, has to get
first shot at some of the BIOS I/O routines, namely console
status, console input, console output, list output, list status, pun-

The Computer Journal/Issue N28

PUBLIC ZRDOS (1 disk) $59.50
If you have acqUired lCPR3 for your ZBO-compatlble system and want
10 upgrade 10 fUll l-System. all you need is lADOS. lADOS features
elimination of control-C alter disk change. public directones. faster
execulion Ihan CP/M. archive status for easy backup. and more'

DSD (1 disk) $129.95
The premier debugger for your 8080. Z80. or HD641 80 systems. Full
screen. With windows for RAM. code Ilsllng. registers. and stack. We
feature lCPA3 versions ot !tIlS profeSSional debugger.

Quick Task (3 disks) $249.00
Z80/HD64180 multitasking realtime executiVe for embedded com
puter applications. Full source code. no run time fees. site license for
development. Comparable to systems from $2000 to $40.0001

Request our free C-T Demonstration Program.

@)
Z·System OEM inquiriH Imtrted.

_ • Visa MaSlerCartl accepted Aad S4 00_ I snlpp,('\g "ancJl,"g ." Norll"l Am~lca. actual- Echelon, lac. :05: elsewhere Soeclfy CII5k 'ormal

ll85 N. San Antonio Road· Los Alios. CA 94022
415/948·3820 (Order line and tech supportl Telex 4931646

ch output, and reader input. In a manual installation of Z
System with lOP support, the BIOS code would have to be
modified. With Z-COM this is quite straightforward. The virtual
BIOS calls to these functions simply go (are vectored) to the ap
propriate entry points in the lOP module. The initial lOP code
included in ZC.COM is just a dummy lOP that simply turns
around and forwards the calls from the lOP to the real BIOS en
try points.

Easy Z-COM Patches
Now that we understand what Z-eOM is and how it works,

we can start to make some changes. If you look at the STRT
startup alias with Z-COM, you will see that it turns on the wheel
byte, loads the TCAP and named directory register, and sets up
the symbolic search path. For our flfSt set of patches, we will
eliminate the need for a startup alias. We will make the system
come up fully tailored to our preferences, and we will save the
time wasted by the STRT alias.

The first step is to get Z-COM running and to use the utility
programs to set it up as we like it. We will generally turn the
wheel byte on (the STRT alias presumably already ran WHEEL
to do that for us), We can set up our named directories using
MKDIR and LDR or the new ZSIG named directory editor
EDITND. We can choose our path using the PATH command or
the new ZSIG SETPATH utility. An external error handler can
be defined in the message buffer by invoking the desired error
handler manually at the command line or by running the ERR
SET utility (this can include a DU or DIR specifier to speed up
the search for the error handler). Finally. if we want to, we can
even invoke a shell, such as the history shell HSH.

21



As before, exit from Z-System with the ZCX command (or just
hit the reset button if that is more convenient). Then load the
new system and run the DOSVER utility. Voila! There is version
1.7.

Now let me show you a trick that makes patching even
easier and doesn't require a debugger at all. Just use the
following command sequence:

Now all we have to do is clone this system using our favorite
debugger. If you can afford Echelon's DSD, I cannot recom
mend it highly enough. It will quickly spoil you. On the other
hand, I will describe here the procedure using Prof. Falconer's
lovely DDTZ, a public-domain Zilog-mne~onic version of DDT.
Here is the sequence of commands to use. Don't forget that the
addresses that refer to the real system are the ones for my
BigBoard. You should make a table like that in Fig. 2 with the
addresses for your system and make the appropriate sub
stitutions in the commands below.

AO:SYS>ddtz zc.co. ; Run debugger and load ZC.COM
-ad400, dbff ,laOO ; Copy running NOR, Shell Stack, IISG

; •• buffer, PATli. WHL, ENV, and TCAP
; .. Into ZC.COM l_ge

-gO ; Exit fro. debugger
AO:SYS)save 2dh z:cnew.co. ; Save Dew version of ZC

AO:SYS>ddu zc.coa
-lzrdoI17.bln
-r900

-gO
AO:SYS>lave 2dh zcnew.Co.

AO:SYS>get 100 zc.co.
AO:SYS>get aOO zrdol17.bln
AO:SYS>lave 2dh zcnew.co.

lun debugger and load ZC.COM
Initialize the Ule control blOCk
Read with offset 900h 10 that the object
•• fHe will load at AOOh
Wa.. boot out of debugger
Save new version

; Load ZC.COM at addre.. lOOK
; Load ZIDOS17 .BIN at addrell AOOK
j Save the DeW _-ory iUle

If you have a shell running while this process is being carried
out, you have to include the SAVE command on the same line as
the DDTZ command, since when the shell loads it wipes out the
memory image in the TPA. By putting the SAVE command on
the same line, it is run before the shell is reloaded.

I have used the above technique and found it to work very
nicely, but a word of caution is in order. A purist would copy the
memory areas only for the specific segments to be modified.
The external file control block and the parts of the message buf
fer other than the byte at offset 0 (0580, where the error
handler-flag is kept) and bytes at offsets lOH to IFH (0590
D59F, where the error handler command line is kept) would not
be copied. Copying the entire message buffer works as
described above, but if you try to make a ZEX batch file to do
this, you will get into trouble, since ZCNEW.COM will then con
tain an image of the message buffer with the ZEX-running flag
set.

To test ZCNEW, make a new STRT.COM alias that just
echoes a signon message (first rename the old one in case you
want it back later), run ZCX to exit from Z-COM, and then run
ZCNEW. Your own personalized Z-System should pop (almost)
instantly to life. After determining that it is really working
correctly, you can rename ZCNEW.COM to ZC.COM. Again, I
recommend keeping old versions with names like ZC1.COM,
ZC2.COM, and so on, on an archive disk.

Putting in a New DOS
Now let's make a change that could not be accomplished

using utility programs, as all of the above changes could be.
Let's replace the older, non-public version of ZRDOS that comes
with Z-COM with the latest version 1.7 of Public-ZRDOS-Plus.
The first part of the process is same as that in a manually in
stalled Z-System. One takes the ZRDOS generating program
ZRDINS17.COM, installs it using Z3INS, and runs it. Having
been installed, it will automatically know the three facts it
needs: where the DOS, ENV, and wheel byte are located. After
it finishes running, there will be a binary image file called ZR
DOS17.BIN.

With a manually installed Z-System we would now have to
go through a somewhat complex process involving 'sysgening' a
system image from the system tracks, patching in the new DOS
using a debugger, and 'sysgening' the image back onto the
system tracks. With Z-COM things are actually considerably
easier, since the two 'sysgening' steps can be skipped. Here is
the command sequence:

22

With this technique there is no computing of offsets, and it uses
only ZCPR3 built-in commands (GET andSAVE). The one thing
you have to remember is that the GET command loads entire
files, and so this technique can only be used to patch in things
that come in contiguous blocks with a length that is an integral
multiple of 128 bytes. If you look at the memory table of
ZC.COM, however, you will see that this includes all system
modules that ever exist in the form of mes: the CPR, DOS,
NOR, ENV, TCAP, Rep, FCP, and lOP. These patches can be
done very nicely from alias scripts. For example, since one
might often change one's named directories. the following alias
might be handy:

a11as PUTNDR:

IF NULL $1
ECHO SYNTAX: $0 NDR-FlLE-NAHE
ELSE
ERA ZCNEW.COK
GET 100 ZC.COK
GET lAOO $l.NDR
SAVE lDH ZCNEW.COK
ECHO TEST ZCNEW.COK
FI

Similar aliases could be used for replacing other modules such
as RCPs and FCPs.

New Command and System Modules
Speaking of RCPs and FCPs, let's talk a little about how we

generate new versions of these and other system modules.
There is no need to discuss the patching techniques. They are
the same as what we have already seen. The question is: how do
we generate the new SYS.RCP, SYS.FCP, and SYS.ENV
modules?

The procedure is the same as in a manual install system,
except that in a manual install system we already had the
necessary Z3BASE.LIB file that is required for the assembly of
new system modules. So far we have not needed one with Z
COM. To make things easier, Joe Wright has kindly provided us
with a generalized Z3BASE.LIB file. All we have to do to adapt it
to our system is to use an editor to fill in the address of the en
vironment descriptor in the "Z3ENV SET ..." definition near the
top of the file. One further hint: while you are at it, change the
SET to an EQU. If you use Z3BASE.LIB to assemble a file in
Zilog mnemonics, the assembler will not accept SET, since that
is a Zilog opcode. You would have to change it to ASET in that
case, but there is no reason not to use the universal EQU. Some

The Computer Journal/Issue #28

'~



programs also require definitions for YES and NO, so you might
want to add the lines:

One last addition. The RCP, FCP,' and ENV modules do not need
it, but other files, and most notably the command processor
code, require an equate to define the address of the entry point
to the command processor. This is a part of the normal Z3BASE
file, but Joe Wright forgot to put it in. Someplace after the
Z3ENV equate, add the line:

Now you should be all set to assemble up l'ew system modules,
like the new FCPIO from ZSIG. You might also want to assemble
a customized SYS.ENV with the correct values of maxdrive and
maxuser and your own choice of printer and console definitions
(see "ZCPR3, The Manual" for details).

"ZCPR3, The Manual" explains in detail how to carry out
the assemblies, though I find that the discussion there makes the
process look more complicated than it really is. Basically, you
assemble the module to a HEX file, convert the HEX file to a
COM file using MLOAD, and then rename the COM file to the
proper name for the module (e.g., "REN SYS.FCP=F
CPIO.COM"l. If you have the SLR assemblers, you can assem
ble the module directly to a COM in a single pass and skip the
MLOAD step. Finally you test the module by loading it using
LDR.

YES
NO

CCP

EQU
EQU

EQU

TRUE
FALSE

Z3ENV - lAOOH

Replacing the Command Processor
Replacing the command processor is no more difficult than

changing any of the other modules in the system. In fact, as we
will soon see, it is much easier to test a new CPR with Z-COM
than it is with the manually installed Z-System.

The basic procedure is as we described for the RCP or FCP.
As usual, edit the configuration LIB file (Z3HDR.LIB or Z31H
DR.LIB if you are using my experimental version ZCPR315D>
and assemble the code. One additional hint. Again, if you have
the fabulous SLR Systems assemblers SLRMAC, ZSOASM, or
SLRl80, select the option to assemble directly to a COM file, not
to a HEX file. It is a shame that so many books and articles have
taught the unnecessarily complex patching method based on
HEX files with their extremely tricky offset calculation. It is
much easier to work with a COM file where the load offset in the
debugger is quite straightforward, namely, lOOH below where
you want the file to go, no matter what address it was assembled
for. If you are using an assembler that can produce only a HEX
file, then use the public-domain MLOAD to convert it to a COM
file just as was done to make the RCP and FCP files.

Now that you have ZCPR3.COM or some such file, all you
have to do is substitute it for the file ZC.CP in A15:. It would be a
sign of foolhardy optimism to destroy the original ZC .CP. I
would recommend renaming it to something like ZCOLD.CP
and then copying the new one into place with a command like
"PPIP A15:ZC.CP=ZCPR3.COM". Now just hit control-c to
warm boot, and the new CPR will be running!

If things did not work out as you intended (and especially if

SAVE 10% on 'AMPRO

P.O. Box 835. Kenmore. :-.lew York 101217 (71811177·0817

~
CALENDAR/CLOCK

$69 KIT

"._~~_...... NOW WIT
l: DATE STAMHFILE

PING!
• Works with any Z-80 based computer.
• Currently being used in Ampro, Kaypro

2, q & 10, Morrow, Northstar, Osborne,
Xerox, Zorba and many other computers.

• Piggybacks in Z80 socket.
• Uses National MM58167 clock chip, as

featured in May '82 Byte.
• Battery backup keeps time with CPU

power off!
• Optional software is available for file

date stamping, screen time displays,
etc.

• Specify computer type when ordering.
• Packages avai lable:

Fully assembled and tested $99.
Complete kit $69.
Bare board and software $29.
UPS ground shipping $ 3,

MASTERCARD, VISA, PERSONAL CHECKS,
MONEY ORDERS & C.O.D.'s ACCEPTED.

N. Y. STATE RESIDENTS ADD 8\ SALES TAX

KENMORE
COMPUTER
TECHNOLOGIES

SCme -1IllIlIY III cndIlIld 1Iogt__
Iily-.CoIIforl__2·3_
lor 122A, 222 or 321 _ ..

COMPUTERS INCORPORATED

PO',

83.
CHECKS

18-1 UtIle_SIC 248.00 224.10
18-2 UtIle~S8C •.00 260.10
2A-2 UtIle _1. SIC _.00 445.50
2M' Prooo_ 1711.00 161.10
2VR VIdooRAMe- lM.OO 175.50
:lAo! STD IIuo SCSI 110 _ 118.00 107.10
!22A CPIM~wI2~ •.00 895.sp
222 PC-008~ wI2~ 12lll1.00 1165.50
321 e--PC-008~ 1.,00 1255.50

__ a,oo lSI.OO an ..-1 for UPS IIliIlPina & _Ing.e-__~_IU.

,.I' ~--=-',

.~ ,.'!:J
W d~,~~

a£ARELE~;;~~;

CALL NOW· CALL COLLECT (415) 378-0125

BEAR ELECTRONICS, P.O. Box 61, Moraga. CA 94556

ALL AMPRO PRODUCTS READY FOR IMMEDIATE SHIPMENT

SOME ",v"MPLES' (0lMr AMPRO PfOdue:ta available
<JV'\ • al .mllar savinga.)

MODEL DESCRIPTlON REG. PRICE DISCOUNT PRICE

The Computer Journal/Issue *28 23



the ne'A' CPR just crashed the system). you can reboot and
reload ZC COM, Remember, you did not change the CPR image
in ZC.COM yet. and things will be fine so long as you don't warm
boot. Before that happens, you should rename ZCOLD.CP back
to ZC.CP Then you can try again. Thatois sure a lot easier than
all the .sysgening' required to test a new CPR with the manually
installed Z-System.

If all went well, the system is now running just the way you
hoped it would. Once you've tested it and are satisfied that it
really is working correctly, you can patch the new CPR into
ZC.COM so that it will be ready immediately after Z-COM loads.
The following commands will do it:

AO:SYS)get 100 zc.coa
AO:SYS)get 200 a15:zc.cp
AO:SYS)save 2dh zcnew.coa

As usual. once you have verified that ZCNEW is working,
rename it to ZC.COM.

Summary and Plans
That wraps things up for this time. You now know how to

make enough patches to mold a Z-COM system pretty well to
your own tastes. If you have Z-COM, I hope you will experiment
some before the next column appears. In that column we will
really dig into Z-COM and do some wild things. If you have any
suggestions or questions, please send them along. My address
and phone numbers are listed below. As a little reward for
those of you who plowed through this whole piece (or who were
taught the trick I was as a freshman in college to read the end of
a paper or essay before you start at the beginning), here is a lit
tle tidbit. ZCPR version 3.3 is coming very soon. I already have
a nearly complete version of it patched into the Z-COM I worked
up for this article. I exped that Z33 will have been released or
will be very close to release by the time this column appears,
and I will devote some space to a discussion of its new features
in the next column. •

Jay Sage
1435 Centre Street

Newton Centre, MA 02159
voice: 617-965-3552

modem: 617-965-7259

Z - Letters

As Jay Sage mentioned in his column, we are starting a Z
Letters section for your comments and questions, and the
following letter from Dreas Nielsen is in response to TCJ#27.

Aliases and Recursion
Jay Sage's discussion of flow control in nested and recursive

aliases (TCJ#27) overlooks a simple technique that is, I think,
better than the one that he presents. Use of XIF and the special
aliases generated by VALIAS involves two drawbacks. For
example, consider the multiple-command line;

IF < condition>
< recursive alias>
ELSE
< other action>
IF
< more commands >

If the alias uses XIF (but is not recursive in the VALlAS style)
the "other action" willalways be executed, even when the con
dition is true. If it is a VALlAS-style recursive alias, all com
mands following it will be discarded.

Recursive aliases can easily be constructed that have
neither of these disadvantages. An example will serve better
than an expalanation:

24

Alias RECURSE:
IFA=A
RECURSE2
FI

Alias RECURSE2:
FI
ECHO THIS IS LOOP NUMBER
REGP6
ECHO DO IT AGAIN'?
IF IN
RECURSE2

Neither of these need be the special "recursive" aliases
generated by VAILAS. As you can see, the truly recursive alias
(RECURSE2 in this example) should start out by popping one
IF level, and you must simply ensure that you push one TRUE
IF level before calling it. (Here the IF <str> =<str> test is
used; the IF TRUE command could be used if you system in
cludes it.)

Without wishing to offend Jay Sage, who is contributing so
much to the Z community, I'd like to point out that by avoiding
the "recursive" aliases generated by VALlAS, you can nest
aliases freely without worrying that you may have created one
of them in "recursive" mode, and that it will blitz the rest of
your command line.

Dreas Nielsen

The Computer Journal I Issue 1128



Using SCSI for Real Time Control
Separating the'Memory and I/O Buses

by Rick Lehrbaum, Vice President Engineering, Ampro

Introduction
The popular microcomputer system buses (Multibus, VME,

STD, S-l00, and IBM PC Bus) have evolved to fit the needs of
system designers in a wide variety of applications. Each com
bines the capabilities of high speed system memory expansion
with the ability to access and expand system input/output ports
and devices.

In recent years, microprocessors have become more power
ful both in terms of raw clock speed and in memory access ef
ficiency. Furthermore, with the continual exponential increase
of memory device density, the price per bit has plummeted,
making system memory a highly expandable system resource.
Consequently, much of the evolution of the popular
microprocessor backplane buses has focused on enhancing the
ease, flexibility, and efficiency of the system memory expan
sion.

But memory expansion is obviously not the only purpose of
the microcomputer system's backplane bus. The system back
plane bus must also be able to accomodate a wide variety of in
put/output (I/O) interfaces to devices such as consoles, prin
ters, disk drives, communication interfaces, and more. Support
for the systems's I/O device interfacing and control is therefore
the second key requirement of the system's backplane bus.

These two functions-memory and I/O expansion-have
distinct, and in many ways conflicting, requirements. Speed is
often the main consideration in the design of memory expansion
interface buses. In a high performance system the backplane
bus must be optimized for the microprocessor's memory bus in
terface signals and timing. Maximum memory access speed is
achieved by a variety of techniques, including both asyn
chronous and synchronous designs, CPU pipelining, memory
prefetch, etc., all of which are coupled tightly with the par
ticular microprocessor architecture (8086, 68000, 16032, etc.) on
which the system CPU is based.

I/O devices, on the other hand, are accessed relatively in
frequently in comparison with memory devices, and have much
slower inherent response times. Access time is therefore
generally not as critical in design of I/O device interfaces as
with memory. Instead, other factors such as data buffering, in
terrupt response, direct memory access <DMA) efficiency, and

. 110 control protocols, are more significant.
The typical system backplane bus is thus called upon to

provide both high speed memory expansion with its inherent
speed requirements, and efficient I/O interface expansion with
its real time, asynchronous requirements. The result is a bus
that is a compromise between the requirements of high speed
memory access, which needs to be finely tuned to the
microprocessor being used, and that of I/O device interfaces,
which are less stringent and therefore capable of a greater
degree of generalization without significant loss of system ef
ficiency.

The Computer Journal I Issue #28

The first generation of microcomputer backplane buses (S
100, STD, and Multibus) all supported both memory and I/O ex
pansion within a single set of signals, and suffered from the
limitations of the required compromise.

More recently, some second generation microprocessor
buses such as Multibus II and VME have begun to provide
multiple interconnects which improve the coexistance of high
speed memory expansion and efficient and flexible VO expan
sion on a single backplane bus.

A significant disadvantage of these second generation
buses' multiple interconnect scheme is the lack of standar
dization between the respective buses. In the case of memory
expansion, this is probably justified by the requirements to
provide minimum access times and the coupling of that objec
tive with the specific microprocessor's chip-level signals.

There remains, however, an opportunity to simplify the
problem of system integration with many types of VO device in
terfaces by standardizing on a universal small system VO bus.
Such a bus has been in development over the past seven years,
and is now a Widely accepted and fully specified standard.

SCSI as a Universal 110 Bus
The Small Computer System Interface (SCSI> was

originally developed by Shugart Associates to provide a stan
dardized interface between computer systems and intelligent
disk controllers. SCSI is now an accepted US standard (ANSC
X3T9.2l in wide use by computer board and system manufac
turers.

In the introduction to the SCSI specification, the principle
goal of SCSI is stated to be:

" ...to facilitate the integration of small computers
and intelligent peripheral devices, particularly
storage devices .....

Although SCSI was originally developed for use in mass
storage applications (Le. disk and tape), there is nothing in its
design which limits it to that realm. On the contrary: the Small
Computer System Interface is, as its name implies, a fully
general I/O interface which can be used for the interconnection
among all types of small computer system devices.

As a general purpose I/O expansion bus, SCSI has the
following featues:

Universal Bus Timing-8CSI is a buffered, asynchronous
I/O bus with request/acknowledge handshake signals. CPU
related timings do not affect bus activity, and dissimilar
processors can share common peripherals. The SCSI bus
therefore effectively transcends the characteristics of the host
computer(s) .

Peripheral Sharing-8CSI's bus arbitration scheme allows
several bus hosts to share a single SCSI bus along with all con
nected peripherals.

25



COMPUTE~S INCO~PO~A7EC

67 East Evelyn ""'" • MountaInv~,CA9~1 • (415) 962-0230. TEl.£X 4940302

BOOKSHELFTM ~tl(lj 100
Fut, Compact, Hish QuIlty, Easy-to-usc CP/M. System

'.

Networking-Bus hosts can also use the bus to communicate
with each other, In effect, SCSI can be used as a low cost, high
speed inter-processor communications channel.

Mass Storage Availability-Not to be overlooked is the
myriad of mass storage peripherals available on SCSI, in
cluding Winchester disk, tape, optical storage, bubble, RAM
disk, and more.

Single-Chip Bus Interfaces-SCSI bus interface ICs are now
available from many sources which implement the entire inter
face-including bus drivers and receivers-in a single package.
In addition, these devices are low cost ($10 to $20).

Host Interface Availability-Nearly every computer bus
now has readily available SCSI "host adapters," which serve as
gateways to SCSI. Also, both single board computers and closed
architecture systems (such as the Macintosh Plus and the new
Wang laptop PC) have begun to include a SCSI port as a stan
dard feature.

High Performance-SCSI supports data rates of 1.5
megabytes per second in the normal asynchronous mode, and
up to 4 megabytes per second in the optional synchronous mode
of data transfer.

The Computer Journal/Issue #28

SCSI is an Intelligent Bus
One of the major advantages of the SCSI bus is its inclusion

of device command protocols in addition to the data transfer
signal protocols normally associated with microprocessor
buses. Non-identical devices can appear the same to the host
computer by virtue of the implementation of one of SCSI's
"Common Command Sets." This has a number of important ad
vantages to the host's software, including:

Increased muitisourcing of peripheral devices-the com
mon command set, along with the SCSI bus interface and
protocols, make it much easier for devices controllers from
several manufacturers to function identically from the host
sys~em's hardware and software point of view.

Reusability and portability of host driver software-Due to
the general similarity of SCSI protocols regardless of device
type, once a software driver is writtem for one SCSI device, it is
easily modified for another device. Further, programs written
for use on one host system can be easily ported to other systems;
in fact no porting is required at all if a partitioned software ar
chitecture providing an SCSI BIOS extension is utilized once the
SCSI BIOS extension is implemented.

Simplification of host driver software development- In ad
dition to the points made above, the host software is greatly
simplified by virture of the on-board firmware located on the
SCSI device or controller. Typically, only high level commands
need be given by the host.

These advantages are not, however without cost. The use of
relatively high level command sets to control the peripheral
devices requires that the device controller posses sufficient
local intelligence to interpret the commands and communicate
~ith the host using SCSI's command protocols. In practice this
is accomplished through the use of a single chip microcontroller
(e.g. 8041), or a combination of microprocessor (e.g. zaO), RAM,
and EPROM.

Additional functions are provided by the SCSI peripheral
controller's on board intelligence which generally far outweigh
the cost of that intelligence. These include:

Increased peripheral data throughput-SCSI devices

Priced from
$895.00

10MB System
Only $1645.00

18M', IBM Corp,; ZSQA', ZiIog.Inc.; CPIM',
~11l<>urcJl;ZCPU' & ZROQS",

EdlelOn, Inc.; Tutoo 005',50_.2000,
inc., TI MAKER 111", rn....er Co

system WIth ZCPR3

• Read/Write/format dozens of
noppy formats (IBM PC-DOS,
KAYPRO, OSBORNE, MORROW... )

• Menu-oased system custom,zatlon
• Operator-friendly MENU shell

• OPTIONS,

• Source Code
• TurooDOS

• ZRDOS
• Hard disk expanSion to 60

megabytes

• SCSI/PlUS'· mult,·master 110
expansion bus

• Local Area Networ1<
• STD Bus Adapter

• ComprehenSIVe Software Included,
• Enhanced CP/M operating system

WIth ZCPR3

• Word prOCeS5lng, spreadsheet,
relational database, spelling
checker, and data encrypt!
decrypt (T/MAKER III'·)

• Operator·friendly shells; Menu,
Fnendly'·

• Read/Write and format dozens of
noppy formats (IBM PC-DOS,
KAYPRO, OSSORNE, MORROW... )

• N\enu-based system customizatlon

• 4 MHZ Z80A CPU, 64K RAM, Z80A
ac, 4-32K EPROM

• Mini/MIcro Floppy Controller
(1-4 Onves, Single/Double DenSity,
,-2 Sided 40/80 traCk)

.2 RS232C Senal Ports (75-9600 baud
& 75-38, 400 baud), 1 Centronics
Pnnter Port

• Power ReqUirement: ... 5VDC dt .75A;
·12VDC atCSA / On board -12'1
converter

• Only 5.75 x 775 Inches, mounts
directly to a 5-1/4' dISk dnve

• ComprehenSive Software InCluded,
• Enhanced CP/M 2.2 operating

~

~ FACTORW, SA, (1) 4"lO18, MlCRCCOMPUT£RS, (613) 5r00628
nx 22408 _ CENT1<E IIlI.ZL CN(-DATA l£ADER LTOA,
EL£CT1lONKlUE ILW'EREUR, (041) 23-4'41, (41) 262-2262, nx 041-6364_,
nx 42621 C»<NJk DYNACClMP 0ANllIT, (03) 66-20-20, nx 43558
COMPUT£R SYSTIMS LJO., (604) 872-7737 FHAHD, SYIM\ET1llC OY, (0) 58:'>-322,
EHGlAHD, QUANT SYSTIMS, nx 121394_, ALPHA TERMINALS
(01) 253-8423, nx 946240 REF 19003131 LJO. (3) 49-11.95, nx 341667 swmoi,
-..cL EGAL·, (1) 502-1800, nx620893 ASAKTA, (08) 54-20-20, nx 13702 USk
SP_, XENIOS INFOIlMATlCA, 593-0822, CONTACT IWoP9.O COMPUT£RS INC"
nx 50364A1lSTll.WA, ASP TEL (415)96~ TEW<. 4940302

Little Board™ •••• $149
The World's Lust Expensive CP/M Engine

CP/M 2.2
INCLUDED

• Ready-to-use profeSSional CP/M
computer system

• Works WIth any RS232C ASCII
terminal (not Included )

• Network available

• Compact 7.3 x 6.5 x 10.5 Inches,
12.5 pounds, ali-metal construction

• Powerful and versatile
• Based on LJllle Board

slngle-ooard computer
• One or two 400 or 800 KB noppy

drrves
• 1o-MB Internal hard diSk dnve

option



generally provide a degree of on board data buffering in one or
both directions which is optimized for the particular type of in
terface.

The Computer Journal/Issue #28

Flgure1; SCSI/lOP Block Diagram.

SCSI/IOP'" •pamjts connection ot
~ 5TD bus indus1Nll/O
intataea (analog, digital, serial,
cIiIPBY, _ con1roI, etc.)

DPANSIClN/1"~- adds 1M key
0lllI0ns to UtIle 1!ollrdI186
.512K~

• 8087 co-pnxessor
•~ Real TIme Clod<
• 2 RS2321422~async serial

portS

• I/O copansion bus

(03) 66 20 20, n.x O5sa we. AMIWl
5'I5TEMS LID, 0\l96 355", n.x 837027
--.S'IMM£TRlC av, 358-0-585-322,
n.x ,213941lW4C1: EGIII. PlUS,
(1) 4502-' BOO, n.x 620893-. AlPHA
1'EIllMWS, LID, (03) .~'6-95,n.x )4'667
_ ASAlCTA, (OS) 54-20-20, n.x 13702
.... CONTACT MIi'fI.O COMI'UTElS INC,.

_. IBM e-. 80'_...... Corp,.

• Only 5.75 x 7.75 'ncheS, mounts
directly to a 5-1/4' disK dow:

• Power ReQUIrement: '5VDC at 1.2SA;
.12VDC at .OSA; On t>oard -12V
cOf1Yerta'

• 5C5I/PI.US~ multi-master I/O
exoansoon bus

• Software Included,
• PC-OOS comPatIble~5 boots

OOS 2.xand 3.x
• Hard Disk suPPOrt

-.FACTOlIIIIl, SA, 41-0018
n.x1l2408~_

MlCIIOCOMPIIlDS, (613) 5OCl-(J628,
n.x 36587 _ CENT1lE EIK11lONIQUE

LEMPEIlEIJIl, (041) 23-45041, n.x .1l6ll1
IMXIL:C~COMI'IlTAllOIlfS
Ln.-., (41) _1939, n.x .1613l! CAHADA:
TIlhI4, (6(U) 438-9012 _ DM8T,

COMPUTERS, INCORPORATED
67 r.t IWIyn AWl,. MounIMI VIew, CA 94041 • (415)~

lUEX 4940301. FAX (415) 961-1041

VIIlIO !lAM EMUlAtOr ......
use ot sottwwe lIIat'Mila to
dIspIIIy controkr ''WlEQ RAM"

I'IlOJUT 1IOAIID/1"~ - adds is
5QUIR inches of _e wrap
prolDt)pe area wrth bu1Iered ond
~ 80186 bus Interface
fer UtIle 1!ollrdI186

Little Boardj186™ •••• $495
High Performance, Low Cost PC-DOS Engine

IootIIBM PC-OOS'}l r----._ (not Included~~.

" /'---.
1 ~
~--._-/'

~~f:

OPTIONS

• TIRe times thf: COMI'\IT1NG POWER of
aPC

• Data and File Compatible wrth IBM PC,
runs "MS-OOS genenc" P'09'am5

• 8 MHz 80186 CPU, DMf\
Counter/limen, , 28/5121<~ zero
_ states, 11>-1281( EPROM

• Min.1Micro Floppy Conl7Olla'
(1-4 DriYa, Sin9lel00u0Ie Densrty,

'·2 SIded, 40/80 tracl<)

• 2 RS23!!C SenaI Ports (SO -38,400
b<IUd), 1 Centronoa Pnnter Port

{so

ZSOA
SCSI/PLUS'· COUNTER/

CPU
aus TIMER

INTERFACE (OPT.)

1 1
INTERNAL BUS \

1 t
lI-64K BYTE STO BUS REAL TIME

RAM/EPROM (I/O) CLOCK
INTERFACE (OPT.)

~S8 +5V RESET

t t

A I I
'"( STO BUS (I/O ONLY)

~ r

c::=_--_s~-S'IPlus'.aus------:J

Improved real time response- Nearly all SCSI devices have
an on board dedicated microprocessor. The device's on board
processing power and interrupt support can be tailored accor
ding to the requirements of the specific interface.

Reduction of host processing bandwidth requiremen
ts-Since the low level maintenance of the interface is under
control of the device controller's on board microprocessor, far
less load is placed on the host's CPU.

A SCSI Real Time lOP
A link between the SCSI bus and a variety of off the shelf

real time interfaces can be created through the use of an in
telligent I/O processor which communicates with the host
system over the SCSI bus, and implements a low level "inter
nal" bus for interface module connections. Such a device has
been called a "SCSI/IOP"~ ,and is illustrated in Figure 1.

The "SCSI/lOP" shown in Figure 1 allows any host with a
SCSI interface to access the real time interfaces connected to
the lOP's "internal" sm Bus. By using sm Bus as an
auxilliary I/O bus, a wide variety of low cost data acquisition
and control interface can be modularly added to the host
system's I/O resources. The 8-bit limitation of sm Bus (as
commonly implemented) is not a disadvantage, since the SCSI
bus data path is also 8-bits. Furthermore, sm Bus is simple to
implement and does not burden the lOP's hardware or software
design. (The electronics required for maintenance of the SCSI
interface and to interface with the sm Bus requires only a few
inexpensive ICs.

The following ten SCSI commands are currently included in
the SCSI/lOP's firmware, though many more can be added:

Request Sense-Returns information regarding the device
and the device controller,



Read lOP Memory-Allows the host to directly read the
contents of the lOP's onboard memory.

Write lOP Memory-Allows the host to directly write to the
lOP's onboard memory.

l

Branch-Causes the lOP to begin code execution at a
specified location in its onboard memory. This permits the use
of multiple algorithms or programs downloaded with the HEX
Download command.

Read 1/0 Port-Allows the host to directly read an I/O port
on the lOP's I/O device interface.

Write I/O Port-Allows the host to write directly to I/O por
ts on the lOP's I/O device interface.

Read/Set Clock-Allows the host to read or set the battery
backed real time clock.

Read Block-Used by the host to read a block of data from
the lOP's RAM or ROM disk option.

Write Block-Used to write a block of data to the lOP's RAM
or ROM disk option.

HEX Download-Allows the host to send programs to the
lOP for subsequent execution with the Branch command.

Benefits of the SCSI/lOP Architecture to Real Time I/O
Several important benefits result from the SCSI/lOP ar

chitecture as a means to standardize small system read time
I/O expansion:

Distributed Intelligence- Due to the multi-master feature of
SCSI, a single host can have multiple lOP's on its SCSI bus. Up
to seven SCSI/lOP's can be controlled by a single host system,
providing a high degree of distributed real time data acquisition
and control capability. Tasks can be simultaneously run on
multiple SCSI/lOP's. In addition, due to the peer-ta-peer nature
of the SCSI bus, each SCSI/lOP can be programmed to asyn
chronously communicate with the host system-and with other
SCSI/lOP's.

Real Time Capability- A major disadvantage of the most
popular disk operating systems (e.g. MS-DOS, UNIX, and
CP/M) is their lack of support for real time events. This
problem is greatly alleviated by the SCSI/lOP since the lOP
contains a coprocessor which can process and even respond to
real time stimuli. As an example, the system CPU is generally
directly involved in the low level requirements of floppy disk
controller support when a sector of data must be read or written
from a floppy diskette. This is generally incompatible with the
real time requirements of data acquisition and control. Fur
thermore, many commercial operating systems were developed
for desk top applications and have no real time or multi-tasking
capability at all.

By offloading the real time chores to the SCSI/lOP, a single
board computer such as the AMPRO Little Board/l86 can sup
port the requirements of an operating system such as IBM's PC
DOS while the lOP manages the data acquisition and control as
a slave coprocessor.

Fault Tolerance- The SCSI/lOP also provides a high degree
of protection against system faults in three key
ways: (l) The SCSI bus buffers the host from the I/O sub
system's real world interface bus (SID Bus>. As a result,
failures in the I/O subsystem will not crash the host CPU
because the host's internal bus is distinct from the STD Bus. The
I/O subsystem can also be powered independently, to further
protect the host from I/O subsystem failure.

(2) Multiple SCSI/lOP's can be connected to a single host
on the SCSI bus, for redundant I/O sub-

28

systems. (3) Multiple hosts can share one or more SC-
SI/IOP's, allowing redundant hosts as well.

Interchangeability- Finally, one of the most significant ad
vantages of the SCSI/lOP architecture is that it allows real time
interface subsystems containing a variety of specific interfaces
to be used interchangeably, resulting in such possibilities as
multi-sourced data acquisition and control subsystems. In ad
dition the reduction of I/O interface functions to a common set of
standardized SCSI commands allows the I/O subsystem to be
moved from host to host with little impact on software,
especially if the applications are written in a highly transpor
table language such as C, Pascal, or Forth. As a result, the host
processor can be selected according to the needs of the
aplication, and can be any type of system having an SCSI bus,
including IBM PC, Apple Macintosh Plus, DEC VAX, or single
board computers with on-board SCSI such as the AMPRO Little
board series.

Conclusions
The current generation of microcomputer system buses

bring with them multiple device interconnects, including a
variety of new I/O subsystem buses. This article has described
an alternative to this approaach, which involves adding SC
SI-as a universal I/O bus-to both bus-based and non-bus
system architectures. Real time I/O on SCSI is accommodated
by means on an I/O processor such as the SCSI/lOP. This ap
proach has many advantages, including:

• Addition of real time capability to computers and
operating systems which are not normally strong in that area.

• Distributed processing.
• Fault tolerance in both hardware and software.
• Reduction of software development efforts.
• Improved portability of software.
• Increased availability of multi-sourced I/O interfaces.•

The Computer Journal/Issue ~28



An Open Letter to STD-Bus Manufacturers
Getting an Industrial Control Job Done

By Jerry Nelson, Ph.D., Phillips University

Our Common Ground
We are not trying to finalize the Manufacturing Automation

Protocol for a steel mill or the Technical Office Protocol for a
building full of Boeing engineers. We are the other people who
make machines and research labs go. Our common ground is a
pile of sm cards and Opto 22 ~ modules wired to the real world,
with a CPU card telling the rest of them what to do. And we want
to write programs for this CPU on a powerful, comfortable
computer full of software tools.

Unity of Development and Target Systems
We have all discovered something even nicer than a

program development system with in-eircuit emulation and a
hardware logic analyzer. It is a computer matched to the target.
If you write on a PC, and the target pile of SID cards also runs'
like a PC, you can take your program from one and try it out on
the other.

Great Things Are Happening for sm
at the 16-bit level

Rather than having just a 16-bit CPU card on the SID bus
and an umbilical cord linked to a powerful, comfortable com
puter somewhere else, it is now possible to build a PC clone on
the SID bus, with cards from ProLog, and from ZiaTech.
ZiaTech also offers EGA graphics on an SID card, based on the
Paradise Auto-Switch chip set. The PC development package is
completed with the VRTXe multi-tasking executive licensed
from Hunter &: Ready. Half of the two' problems with this
package-high cost and complexity-have been solved by
ZiaTech by pre-eonfiguring the executive to their hardware and
to the MS-oose operating system which runs under it. The con
figured VRTX, in which MS-DOS runs as one of the tasks, is
called Multi·DOS.

Sit down anywhere to program, even next to the pile of STD
cards, and just slip a disk into the target to bring it to life, test
the application.

One thing that is NOT happening nicely at the 16-bit level is
the expansion of the PC itself for industrial process control. The
AID DIA data acquisition add-in cards are legion <Data Tran
slation, Asyst, LabTech Notebook and all that), but real-world
control cards are limited and there is limited space to put them
inside a PC. The industry leader for such cards is Metrabyte,
and Metrabyte tried to solve the expansion problem. Their
solution was a proprietary bus, and we hope the customers they
trap with it will be happy.

Industrialized, SBC-style PC·ATs in bigger, ruggedized
boxes (Faraday, Sigma Information Systems) is a more
rational approach because it is based on an open bus. But the PC
bus is the wrong bus. With STD, we already enjoy all the fun
ctions we need, on the right-size real estate; there is little money
to be made r.e-inventing this wheel on PC boards.

The Computer Journal/Issue 1128

A PC with STD-bus Expansion -Who has linked the PC to
the STn bus? Not as a terminal to a target, but as one system? A
SCSI port in the PC can drive an external SID expansion bus. At
the SID end, the ribbon cable stops at an Ampro SCSI/lOP in
telligent I/O processor. Back at the PC end, all one needs is the
realization that SCSI is not just for Winchesters. SCSI is univer
sal, SCSI supports Very Local Area Networks (distributed com
puter systems). Call Rick Lehrbaum, Vice President of
Engineering at AMPRO, for advice on how to do it. The practice
you get will help you apply SCSIs to the office market, where its
1Mbytels transfer rate meshes nicely with the 1.05 Mbyte size of
a 300 dpi laser printer page image.

A PC/SID link using LAN rather than SCSI technology was
offered 1185 by Beal Communicaions, based on a token bus
protocol similar to Arcnet. How are they doing in the market
place? What are the application areas?

"Simplicity and completeness are
everything for people Interested In
solutions to problems, ...."

Great Things Are Waiting to Happen
for STD at the 8-bit Level

We need: (l) A powerful, comfortable computer for
program development, (2) Tools, especially a multi-tasking
executive, and (3) Access to the STD bus.

Software- The tools are here: 8-bit Modula-2 from Borland
International, and the Quick Task real-time multi-tasking
executive from Echelon, Inc. I call your attention to Quick Task,
and invite comparison with Hunter It: Ready VRTX. Kadak, U.S.
Software, and !PI MTOS/MP.

Hardware- The 8-bit renaissance bas brought power with a
VLSI equivalent to the SOI86, namely the Hitachi HD641SO. Com
puters using it include the 5emiDist's DT-42 and the MicroMint
SB-1SOFX. We are at the threshold of 1 Mbyte RAM directly ad
dressed from a 12.288 MHz CPU chip. To slow down the powerful
development computer when addressing industrial STD
peripheral cards, I call your attention to the TA84HC04110 cycle
extender chip from Texas Arrays, Inc.

OperaUng System- The powerful development computer is
comfortable because of its new operating system, to which a
UNIX-like assortment of tools automatically confIgure them
selves. This is the total CP1M- replacement called zoos- ,
from Echelon.

29



A weakness here, as with the PC-AT, is multi-tasking-in
the comfortable development environment, not in the target ap
plication Until multi-tasking ZOOS comes from Richard Conn
and Echelon. there is rapid context switching and restoration
using Backgrounder II by Bridger Mitchell, from NAOG, the
North Amencan One-Eighty User's Group.

Whal .r~ W~ Waiting For?- We are waiting for someone to
put a full-up HD6418O/Z00S system on the sm bus, or an STD
expansion bus link to an existing HD64180/Z00S computer.

On the STD bus we have Hitachi HD641~basedCPU cards
from several suppliers but no turn-key systems (c'mon guys, I
want to build my application, not the development system too).

Off the STD Bus we have from AMPRO a SCSI link to the
STD, but the machine they link well is an 80186; they link the S
bit Z80 poorly I you have to write the software; the card needs a
piggyback add-Qn in the CPU socket to retrofit the SCSI port) ;
and the HD64180 they link not at all. Their product line has PC
compatible 801865, z-aos, and a hole in the middle where the
HD64180 should be.

Editor's nole: AMPRO now makes the Little Board/Plus which
incorporates the SCSI on the main board and eliminates the
need for a daughter board, and support software is available for
their SCSI/lOP.

We have an HD64180 SBC with SCSI port from Southern
Pacific Limited in Japan, but they use the dead end CP/M+
operating system, not ZOOS and offer no STD bus expansion.

We have all the Right Stuff from Micromint, but they
haven't gotten around to developing and marketing a system
with an STD cage attached to their SCSI port.

Conclusion
Simplicity and completeness are everything for people in

terested in solutions to problems, not software "features," har
dware "tweaks," or ideological arguments.

Suppliers List

Connecting the sm rack via SCSI, either to a PC or to the S
bit renaissance, gives the sm bus the completeness it needs for
market stability. The technology is available from Ampro. This
connection gives the growing number of cost-effective, bus-less
Single Board Computers <SBCs) now entering the market a
universal route to expansion. Expansion could be to sm cards
in industrial/laboratory control, laser printers, Winchesters.
Let's make it official for expanding computers:'1f it isn't a PC,
give it an sm.' .

Putting the entire PC or entire super s-bit machine on the
sm bus is useful and even necessary for some applications. But
it will always be less cost-effective than links to the powerful,
comfortable machines the engineer otherwise chooses and uses.
In other words, machines that sell to the offices and everyone
else will always be cheap and can have industrial 1/0 aded;
special machines configured on an industrial bus will always
cost more.

Please send me your wisdom; tell me about products I have
forgotten. I can't wait to be told this market snap-shot is out of
date. If I hear about enough new items, I will revise this open
letter. Initial circulation was confined to the list of suppliers
mentioned.

Jeremih 1. Nelson, Ph.D.
Working Group in Biophysics
Philipps University; Renthof 7
D-3550 Marburg
WEST GERMANY
Telephone 06421/284161

Rick Lehrbaum
Ampro Computers, Inc.
67 East Evelyn Ave.
Mountain View, Ca 94039

SCSI/lOP I/O processor, links SID bus
to powerful, comfortable development
computer over a SCSI port. Their line in
cludes SBCs and turnkey systems with
ZOOS but not the Hitachi HD64180 CPU.

Beal Communications
11020 Audilia Road
SuiteC101
Dallas, TX 75243

NETPC/STD card uses token bus
protocol similar to Arcnet to link PC to
SID cage for industrial control ap
plications.

John Heiner or Mike Nicewonger
CuBit
190 SO. Whisman Rd.
Mountain View, CA 94041 They make a
nice all-CMOS sm HD64180 CPU card,
but have no intention of offering a com
plete system. Their customers want to
connect PCs to the SID bus even if CPUs

30

are different and cross-software is
needed.

DYAD Technology Corp.
4040 Sorrento Valley Blvd.
San Diego, CA 92121

VRTX on $1,700 add-in card for the PC
guarantees more complete, ready-to-go
configuration than the software-Qnly
DSP from Hunter & Ready.

Frank Gaude
Echelon, Inc.
885 North san Antonio Road
Los Altos, CA 94022

The S-bit renaissance: ZOOS operating
system and utilities; Quick-Task multi
tasking executive, distribution of
Borland Int'! MODULA-2.

Hunter & Ready. Inc.
445 Sherman Avenue
Palo Alto, CA 94306

VRTX versatile real-time executive;
DSP, "Device support package" for IBM
PC available.

Industrial Programming, Inc.
100 Jericho Quadrangle
Jericho, NY 11753

MT08-8OMP multi-processor, multi
tasking executive for 8080 & up; this
family of compatible execs is especially
popular in the 68000 world.

Kadak Products, Ltd.
206-1847 West Broadway Ave.
Vancouver, BCV6J 1Y5CANADA

AMX Multitasking Executive for Z80,
etc.

Laboratory Technologies, Inc.
255 Ballardvale St.
Wilmington, MA 01887

LABTECH NOTEBOOK for data
acquisition; available through Analog
Devices and Burr-Brown. Data
acquisition systems in the PC can not
grow to industrial and lab control
systems, but create the market for them.

M.A.N. Systems
323N.3rd.
Medford, OK 73759

The Computer Journal/Issue '28



As long as Ampro won't make an
HD64180, one must turn instead to this an
HD64180+RAM add-on for the Ampro
ZOO card.

MacMillan Software, Inc.
630 3rd Ave.
New York, NY 10022

Asyst, and Asystant Plus Software for
AID DIA cards. The engineers and scien
tists introduced to data acquisition this
way now want expansion to industrial
and lab control.

MetraByte Corp.
440 Myles Standish Blvd.
Taunton, MA 02780

Beyond A/D D/A cards for data
acquisition; Opto22 and the proprietary
MetraBus driven from the IBM-PC.

Ray Alderman Matrix
1639 Green Street
Raleigh, NC 27603

If they made a 64180, it would be nice.

Craig Henderson
MicroAide
685 Arrow Grand Circle
Covina, CA 91722

Working on release of their sm board
with Hitachi 64180 CPU, WD 33C93 FDC
and ZOOS operating system. Who will be
the value-added OEM to offer a turnkey
system based on this card?

MicroMint, Inc.
#4 Park Street
Vernon, cr 06066

The SB-l80 of BYTE/Steve Ciarcia
fame. Piggyback SCSI links hard disk,
but not sm bus.

Mr. Frank Wrobel
Microtrix, Australia
24 Bridge Street
Eltham, VIC 3095
AUSTRALIA

HD64180 & ZOOS on SID bus; startup
company without turnkey system as of
11/86. Please tell me the current status
on the Microtrix product.

Bruce Morgan
North American One-Eighty Group
PO Box 2781
Warminster, PA 18974

Source for Bridger Mitchell's
Backgrounder II (rapid context swit
ching in the new Hitachi 64180/ZDOS
world>.

Mr. Byron Brooks, VP Marketing
Mr John Carobine, Mgr., Customer Sup
port
OneacCorp.
27944 N. Bradley Road
Libertyville, IL 60048

An elegant new 8-bit machine with
ZDOS, a company without Hitachi.
Engineers are among those who would
appreciate this totally battery backed,
big RAM, diskless machine-the only
way to loose data on this computer is to
throw it out the window. But engineers
need both a 64180 host and a SCSI link to
target SID card cage.

The Computer Journal/Issue lf28

ProLog, Inc.
2411 Garden Road
Monterey, CA 93940

PC on the STD bus, but ZiaTech has the
glory. Prolog should re-think their
strategy: 8AND 16, not 80K 16. Market
turnkey systems on the bus and off the
bus.

Scientific Solutions, Inc.
6225 Cochran Road
Cleveland, OH 44139

Lab Master, Lab Tender AID D/A
acquisition cards for PCs.

SemiDisk Systems, Inc.
PO Box GG
Beaverton, OR 97075

Their DT42 is a lovely HD64180 SBC
board with ZDOS operating system, in
tegrated to the famous SemiDisk 8Mbyte
battery backed RAM card for a disk-less
system. Who sells this as a turnkey
system? A link to the STD bus is needed
for industrial and lab control use.

Sigma Information Systems
3401 E. LaPalma Ave.
Anaheim, CA 92806

Industrialized version of PC-AT; SBC
plugs into cage.

Softaid, Inc.
8930 Route 108
Columbia, MD 21045

64180 MT-Basic multi-tasking BASIC
compiler (same company as ZSO i.C.E.
Box tester) .

Hiroshi Katayama, President & Director
Southern Pacific Limited
SanwaBldg.
2-16-20 Minamisaiwai
Nishi, Yokohama
JAPAN 220

MSC-LATl & -LAT2 computers,
HD64100 with CP1M +, not ZOOS.

Hitachi America, Ltd.
2210 Q-Toole Ave.
San Jose, CA 95131

HD64100 chip; HD63484 graphics con
troller.

Texas Arrays, Inc.
1301 Dentron Dr.
Carrollton, TX 75006

TA84HC04 integrates slow Z80 I/O sup
port chips with fast 8-bit renaissance
CPUs.

U.S. Software
Microcontroller Dvsn.
5470 N.W. Innisbrook Place
Portland, OR 97229

USX Executive for 8086, 8051, 8096;
Multi-Tasking Kernal for everything
(ZSO, 6502, 68000 family>.

Gary Harris
VersaLogic Corp.
87070 Dukhobar Road
Eugene, OR 97402

An elegant concept: a ZSO Smart Card
with NOS (no disk non-volatile operating
system) and C4 BASIC. "Write and test
programs in electronically erasable
PROM or 'self-powered' static RAM
chips. No assembling, compiling or even
PROM burning. Programs are there to
stay, with or without power. Copy,
remove and transport the chips like
regular PROMS."

Perhaps we could update this elegant
concept with a 64180 CPU and 64180
multi-tasking BASIC from Softaid, Inc.
Instead of a NOS, use Oneac's and Semi
Disk's concept of disk emulation in cheap
DRAM. Now all out tools run on a Very
Smart Card, and we can plug in rotating
disks at any time.

Vrooman Chan Communications
P.O. Box 5822
Station A
Toronto, ONT M5W 1P2
CANADA

A 6.5 x 4.0" Hitachi SBC. Why not
rework it as a 6.5 x 4.SPvfO STD card
with attached 3.5" microfloppy as a com
plete ZDOS industrial system.

Bob Burkle or Jerry Winfield
WIN Systems
PO Box 121361
Arlington, TX 76012

100% CMOS HD641OO, but no FDC, no
turnkey systems; do we really want to
run cross-software from MicroTech
Research on DEC minis to generate 64180
code?

ZiaTech, Inc.
3433 Robert Court
San Luis Obispo, CA 93401

PC with EGA on sm bus; "Multi
DOS": VRTX configured to this PC and
to MS-DOS. The most sophisticated and
complete example of a 16 bit develop
ment system on the sm bus.

Editor's Note: I slightly condensed this
list to fit the space available, and any
errors or typos are my responsibility.

31



68000 SINGLE BOARD COMPUTER
$395.00

32 bit Features I 8 bit Price

For your existing 68000 hardware, you can get the K-OS ONE
Operating System package for only $50.00. K-OS ONE is a powerful,
pliable, single user operating system with source code provided
for operating system and command processor. It allows you to
read and write MS-DOS format diskettes with your 68000 system.

The package also contains an Assembler, an HTPL (high level
language) Compiler, a Line Editor and manual.

Computer Controlled Machining
I'm finally getting started on my long

delayed project of adapting my 12" Atlas

above statement in the last issue, and we
are going to emphasise using computers to
solve problems. This will involve the ap
proaches of selecting the best system for
the application when equipment can be
purchased for the specific use, and
making existing equipment work when
time and/or money limitations prevent
you from buying new equipment.

I don't plan on ever working with just
one system! I'll keep the old while adding
the new, and I'll be very selective about
using the most suitable system for the ap
plication because I'll have a lot from
which to choose.

I will be adding an IBM PC XT or AT
clone with a 20 Meg hard drive because I
need the low-cost high-quality accoun
ting, spreadsheet, cross assemblers and
cross compilers, desk top publishing, and
engineering software which are available
for this system. I just can't continue
without the 16-bit engineering software
available from BY Engineering (2200
Business Way, Suite 207, Riverside, CA
92501, (714) 7S1-0252), and if you're in
terested in anything more than wor
dprocessing and spreadsheets, you should
get their free catalog. I also need to add
CAD (Computer Aided Drafting) and
CAE (Computer Aided Engineering) to
prepare schematics, illustrations, and
printed circuit board layouts.

The fact that I'm finally getting a PC
does not mean that I will stop using my
Ampro Z-SO Little Boards with Echelon's
ZCPR3. I still feel that the Z-SO systems
are the best choice for many measurement
and control uses, and when I need higher
performance I'll use Hawthorne's 6S000
TinyGiant. For specific uses such as
ground water table level logging I'll even
use S-bit microcontrollers instead of a full
microcomputer, and the data can be
collected and analyzed by almost
anything. I'm not enthused about learning
all about low-level PC DOS programming
or assembly language programming for
the 8OSS's segmented architecture-I'll
primarily stick with the above mentioned
software and a few simple utilities in
Pascal or C, and do the rest of my work
on the Z-SO or 6S000. I realize how impor
tant the PC is for those working in that
market; and we will publish serious PC
programming articles, even though I do
not choose to work in that environment
myself.

*

$395.00

. $50.00

* .. * ..

8836 S. E. Stark

Portland, Or 97216

.. .. * .. * * * *

* * *

It's Not Software or Hardware
It's tbe Solutions to Problems

A number of people picked up on the

because I want to learn 6SK assembly
language and how to interface the 6SK
peripheral chips for control applications.

Our knowledge of several systems will
enable us to recognize the strengths and
weaknesses of the different systems so
that we can choose the best solution for a
particular application, and even devise
new systems combining the best features
of the ones we have used.

HAWTHORNE TECHNOLOGY

-Software Included:
* K-OS ONE, the Gaooo Operating

System (source code included)
* Command Processor (w/source)
* Data and File Compatible with

MS-DOS
* A 68000 Assembler
* An HTPL Compiler
* A Line Editor

* *

Order Now:
VISA, Me

(503) 254-2005

* * .. * .. * ..

SHIPPED ON AN HS-DOS 5 1/4" DISK. .

ASSEMBLED AND TESTED ONLY

* * .. * .. ..

K·OS ONE, 68000 OPERATING SYSTEM

Add a terminal, disk drive
and power, and you will have
a powerful 68000 system.

-Hardware features:
* 8HHZ 68000 CPU
* 1770 Floppy Controller
* 2 Serial Ports (68681)
* General Purpose Timer
* Centronics Printer Port
* 128K RAH (expandable to

512K on board.)
* Expansion Bus
* 5.75 x 8.0 Inches

Hounts to Side of Drive
* +5v 2A, +12 for RS-232
* Power Connector same as

disk drive

Editor

(Continued from page 3)
learned how to achieve the maximum
from what we already have. There are in
stances where nothing but the newest wilt
do, such as the 68030 or 803S7 with a
math coprocessor for heavy number crun
ching, but we should not try to fool our
selves by saying that existing equipment
can not continue to do what it already
does well. We have to be frank and just
plain admit that a lot of the fun is learning
about new systems-that's why I have one
of Hawthorne's TinyGiant 68000 SBCs,

32 The Computer Journal/Issue 1128



lathe for computer controlled machining,
and I would like to hear from anyone with
helpful suggestions (or even those with
similar problems).

I want to drive the leadsqew, the
crosssiide, and the compound slide under
computer control, and the first step will
be to determine where I can use stepper
motors and where I will need to use DC
motors. I plan on incorporating shaft en
coders and closed loop feedback control
systems (see BV Engineering's article in
TCJ#27) to ensure that the requested
operation really occurs. One of the major
problems is the mechanical installation of
the motors and sensors because I want to
retain the hand control feed wheels and
haven't figured out how to attach the
motors. This is a mechanical problem in
stead of a computer problem-but that's
what you run into when working with real
world devices.

Once I have it running I'll develop
programs with logic seeking for taper and
contour turning, and threading, and then
add special routines for cross slide moun
ted drilling, milling, and grinding attach
ments. Future enhancements will be a
computer controlled quick change tool
post, a stepper motor driven dividing head
for the cross slide, and a stepper motor
dividing head control for the spindle to be
used in conjunction with the cross slide
mounted drilling and milling attachments.

My programming language choice for
this project will be C for the user interface
with the functions written in assembler or
C depending on the speed required. I'll
use BDS C (version 1.6) because it has a
good library manager, it is easy to incor~

porate assembly language functions, and
it will produce ROMabie code. I an
ticipate that this will require several
microprocessors and/or microcontrollers
for real time control and that the STD Bus
would be ideal, but I'll probably start with
several Ampro 8-bit Little Boards plus
wirewrapped boards and go with the flow
as things develop-perhaps I'll end up
using one of my S-IOO systems.

While working on this project I have
noted the scarcity of information on low
cost motors, drivers, encoders, and the
special chips suitable for the low volume
user. We will be establishing resource in
formation on the availability of hardware

The Computer Journal/Issue *28

and software suitable for the experimenter
or developer, and any information that
you can supply will be much appreciated.
The best sources that I have for motors
and hardware at this time are Silicon
Valley Surplus, United Products, and
Jerryco. I would be especially interested in
public domain stepper or DC motor driver
programs including ramp-up and ramp
down features, and feed back control
programs. This information and software
will be placed on the BBS if there is suf
ficient response.

C Resources
One of the results of my working with

many different systems is that I can not
afford to buy a full set of commercial sof
tware for every system, so I depend on
using public domain utilities where ever
possible-and I'm only interested in
programs with the source code so that I
can modify, incorporate in programs, link
with programs, add to special libraries,
etc.

The best source of programs which fit
my needs is CUG (The C User's Group,
Box 97, McPherson, KS 67460, phone
(316) 241-1065), because they offer useful
utilities for both 8-bit and 16-bit systems
with the source supplied on most disks
and they also publish a quarterly newslet
ter which serves as an international
resource for C programmers. To make
their collection even more valuable, they
have recently produced a Library Direc
tory of disks up to #199 which makes
selection of the functions you need easy.
This directory is $10 and is well worth the
price.

In order to support CUG, we will be
listing the contents of their new releases,
and reviewing selected programs. We
would like to publish additional C
programming manuscripts or reports on
the user's disks, so contact us if you're in
terested.

Another valuable resource is the
DESMET GAZETTE (Pacific Data
Works, 1341 Ocean Ave., #257, Santa
Monica, CA 90401, phone (213) 390-4854)
published by Andrew Binstock. Even
though the main subject is Desmet C,
there is a lot of information useful to all C
programmers so that it is well worth the
$18 per year.•

TURBO I'ROSIWIIIERS-

I ""'- / I

,
•••CUTS OEBUSs/1S FRUSTRATIO••
TDebugPLuS IS a new. InteraClive symboliC de
Dugger llial ,ntegrales wl/h TurDa Pasca/lo let you
• Examine and change variables at runtime

uSlrg symDollc names -Including records.
pOinters. arrays. 3nd local vaflables.

• Trace and s,' breakpoinls uSing procedure
names or source statements,

• View source code while debugging,
• Use Turbo Pascal editor and DOS DEBUG

commands.

TDeDugPLus also Includes aspeCial MAP Iile
generatiOn morle tully comoa/lble With exlernal
rleDuggers such as Peflscooe. Atron. SymrleD. and
others - =ven on orograms wollen With Turoo
EXTENDER

An exoanrled. suooorterl version ollhe acclaJ.'ned
outllc Qomaln Drogram TDEBUG. the TDeDugPLuS
oackage .neluoes one DSDD disk. comolete source
cOOe a relerence card. and an 80 ·oage Of/nleO
manual 256K;1 memorv reqUllerJ Simplify
OeDugglng' 560 COMPLETE

TURBO EITE.OER N

TurDo EX TENDER OIovldes ,au the lollowtng
power/ullooiS 10 oreak the 64K Damer
• Large Code Model allows programs to use all

640K Nllhoul overlays or chalOlng, while
allOWing you 10 convert eXISting programs wtih
miOimal ellorr, makes EXE lties:

• M,ke Facilily olfers separate compilation
elimtnattng Ihe neerJ lor you to recomOlle
unchangerJ modules.

• Larg, Oat, ArflYS automaticalty manages
data arrays up to 30 megabytes as well as any
arrays tn expanderJ memory (EMS):

• Addition,1 TurOo EXTENDER 1001' inctude
Overlay Analyst. Disk Cacne, Pascal Encryptor,
Shell File Generator, and File Browser.

The Turbo EXTENDER package includes two DSDD
diSks, complete source code, and a ISO-page
prmterJ manual. Order nowl $85 COMPLETE.

TUIIOl'O.II UTILITIES'"
"If you own Turbo Pascal, you should own
TurboPower Programmers Utitities, that's alf there
is to it." Bruce Websler. BYTE M,g'zine

TurboPower Ulililies olfers nine powerful pro
grams: Program Structure Anatyzer, Execution
Timer, Execulion Proliler, Pretty Prinler. Command
Repeater. Pattern Replacer, Difference Finder, File
Finder, and Super Directory.

The TurboPower Utitities packag, inctudes three
DSDD disks, reference card. and manual. $95 wilh
source code: $55 executable only.

ORDER DIRECT TODAY'
• MC/VISA C,II Toll Free 7days a week.

800-538-8157 xB30 (US)
800-672-3470 x830 (CA)

• Umite" Time O"erl Buy two or more
TurboPower products and save 15%!

• S,tI,',cl/on Gu,ranteed or your money /Jack
within 30 days.

For Brochures, Dealer or other Information,
PO. CDD-c;lII or wrile:

~
3709Scatts Vall.yDr., 1/122&. Scalls Valley. CA 95066
(408) 438-8608

•• M-F 9AM-SPM PST

Th. abo" TurboPartOr prOl1uclS reqUlt. Turbo PasC41 3.0
(s~rrJ, 8081. ar BCD) and PC-DOS 2.X ar n. and
run an 11M IBM peIXT/AT and campa/rbl.s.

33





1L- B_a_c_k_ls_su_e_s_A_v_a_i_la_b_le_: 1

Issue Number 1:
• RS·232 Interface Part One
• Telecomputing with the Apple II
• Beginner's Column: Getting Started
• Build an "Epram"
Issue Number 2:
• File Transfer Programs for CP/M
• RS-232 Interface Part Two
• Build Hardware Print Spooler: Part 1
• Review of Floppy Disk Formats
• Sending Morse Code with an Apple II
• Beginner's Column: Basic Concepts
and Formulas
Issue Number 3:
• Add an 8087 Math Chip to Your Dual
Processor Board
• Build an AID Converter for the Apple
II
• Modems for Micros
• The CP1M Operating System
• Build Hardware Print Spooler: Part 2
Issue Number 4:
• Optronics, Part 1: Detecting,
Generating, and Using Light in Elec
tronics
• Multi-User: An Introduction
• Making the CP/M User Function More
Useful
• Build Hardware Print Spooler: Part 3
• Beginner's Column: Power Supply
Design

Issue Number 8:
• Build VIC-20 EPROM Programmer
• Multi-User: CP/Net
• Build High Resolution 80100 Graphics
Board: Part 3
• System Integration, Part 3: CP1M 3.0
• Linear Optimization with Micros

Issue Number 14:
• Hardware Tricks
• Controlling the Hayes Micromodem II
from Assembly Language, Part 1
• 80100 8 to 16 Bit RAM Conversion
• Time-Frequency Domain Analysis
• BASE: Part Two
• Interfacing Tips and Troubles: Inter
facing the Sinclair Computers, Part 2
Issue Number 15:
• Interlacing the 6522 to the Apple II
• Interfacing Tips & Troubles: Building
a Poor-Man's Logic Analyzer
• Controlling the Hayes Micromodem II
From Assembly Language, Part 2
• The State of the Industry
• Lowering Power Consumption in 8"
Floppy Disk Drives
• BASE: Part Three
Issue Number 16:
• Debugging 8087 Code
• Using the Apple Game Port
• BASE: Part Four
• Using the 80100 Bus and the 68008 CPU
• Interfacing Tips & Troubles: Build a
••Jellybean" Logic-to-RS232 Converter

34

Illue Number 17:
• Poor Man's Distributed Processing
• BASE: Part Five
• FAX-64: Facsimile Pictures on a
Micro
• The Computer Corner
Interfacing Tips & Troubles: Memory
Mapped I/O on the ZX81

Issue Number 18:
• Parallel Interface for Apple II Game
Port
• The Hacker's MAC: A Letter from Lee
Felsenstein
• 80100 Graphics Screen Dump
• The Ls-l00 Disk Simulator Kit
• BASE: Part Six
• Interfacing Tips & Troubles: Com
municating with Telephone Tone Con
trol, Part 1
• The Computer Corner
Issue Number 19:
• Using The Extensibility of Forth
• Extended CBmS
• A$500 Superbrain Computer
• BASE: Part Seven
• Interfacing Tips & Troubles: Com
municating with Telephone Tone Con
trol, Part 2
• Multitasking and Windows with CP/M:
A Review of MTBASIC
• The Computer Corner
Issue Number 20:
• Designing an 8035 SBC
• Using Apple Graphics from CP/M:
Turbo Pascal Controls Apple Graphics
• Soldering and Other Strange Tales
• Build a 80100 Floppy Disk Controller:
WD'nfl'l Controller for CP1M 68K
• The Computer Corner
Issue Number 21 :
• Extending Turbo Pascal: Customize
with Procedures and Functions
• Unsoldering: The Arcane Art
• Analog Data Acquisition and Control:
Connecting Your Computer to the Real
World
• Programming the 8035 SBC
• The Computer Corner
Issue Number 22:
• NEW-DOS: Write Your Own Operating
System
• Variability in the BDS C Standard
Library
• The SCSI Interface: Introductory
Column
• Using Turbo Pascal ISAM Files
• The AMPRO Little Board Column
• The Computer Corner
Issue Number 23:
• C Column: Flow Control & Program
Structure
• The Z Column: Getting Started with
Directories &User Areas
• The SCSI Interface: Introduction to
SCSI

• NEW-DOS: The Console Command
Processor
• Editing The CP1M Operating System
• INDEXER: Turbo Pascal Program to
Create Index
• The AMPRO Little Board Column
• The Computer Corner
I"ue Number 24:
• Selecting and Building a System
• The SCSI Interface: SCSI Command
Protocol
• Introduction to Assembly Code for
CP/M
• The CColumn: Software Text Filters
• AMPRO 186 Column: Installing M80
DOS Software
• The ZColumn
• NEW-DOS: The CCP Internal Com
mands
• ZTIME-l: A Realtime Clock for the
AMPRO z-so Little Board
• The Computer Corner

Issue Number 25:
• Repamng & Modifying Printed Circuits
• Z-Com vs Hacker Version of Z-System
• Exploring Single Linked Lists in C
• Adding Serial Port to Ampro Little Board
• Building a SCSI Adapter
• New-DOS: CCP Internal Commands
• Ampro '186: Networking with SuperDUO
• ZSIG Column
• The Computer Corner

Issue Number 26:
• Bus Systems: Selecting a System Bus
• Using the SBI80 Real Time Clock
• The SCSI Interface: Software for the
SCSI Adapter
• Inside AMPRO Computers
• NEW-DOS: The CCP Commands Con
tinued
• ZSIG Corner
• Affordable C Compilers
• Concurrent Multitasking: A Review of
DoubieDOS
• The Computer Corner

Issue Number 27:
• 68000 TinyGiant: Hawthorne's Low
Cost 16-bit SBC and Operating System
• The Art of Source Code Generation:
Disassembling Z-80 Software
• Feedback CQntrol System Analysis:
Using Root Locus Analysis and Feed
back Loop Compensation
• The C Column: A Graphics Primitive
Package
• The Hitachi HD64180: New Life for 8
bit Systems
• ZSIG Corner: Command Line
Generators and Aliases
• A Tutor Program for Forth: Writing a
Forth Tutor in Forth
• Disk Parameters: Modifying The
CP1M Disk Parameter Block for Foreign
Disk Formats
• The Computer Corner

The Computer Journal/Issue #28



I Wanted I
~===================================

• Cross Assemblers 1& Cross Compilers - We need Public Domain programs with source code,
and tutorials on how to write a simple cross assembler for a micro-controller chip.

• Terminal Control Codes - TCJ will publish a reference listing of terminal control codes, and also
place the data on our BBS. Send the data on your terminal to share with others, and let us
know what terminal data you need.

• C and Pascal Peripheral Modules - TCJ will publish Pascal Include files and C header files
for implementing peripherals such as printers, terminals, etc., and also place this data
on our BBS. Send your files to share.

TotalSurface
Foreign

CanadaU.S.Subscriptions

~--------------------------------------------I

TCJ ORDER FORM ;
I
I

6 issues per year
o New 0 Renewal 1year $16.00

2 years $28.00
$22.00
$42.00

$24.00

Back Issues ----------------- $3.50 ea.
Six or more ----------------- $3.00 ea.
's

$3.50 ea.
$3.00ea

$4.75 ea.
$4.25 ea.

Total Enclosed

All funds must be in U.S. dollars on a U.S. bank.

o Check enclosed 0 VISA 0 MasterCard Card # _

Expiration date Signature _

Name _
illl'

Address _

City -->.JState, -'-'ZIP -------

The Computer Journal
190 Sullivan Crossroad. Columbia Falls. MT 59912 Phone (406) 257-9119

'I
1
I
1L I

The Computer Journal/Issue '28 35



liiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiNiiiiiiiiiiiiii
e

WiiiiiiiiiiiiiiSiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

ANALYStS__ .. CIRCUIT DESIGN GRAPHICS MATHEMATICS
XFER .. .. 'R95 ....CTRL ......__'n£!i POP 172.95 TEKCAl.C 172.95

• lfO"\5l'ef~iJ"lCf()"'lAnolySls • ActIVe f.,Mer DesQn • "enPtoNer ()'rver • Scl8l"tlflc CoIcuJoto
• Svnfneslze Cltcultslh.Jrcfl()l"'S • LC1oNi~tgn!8ono ooswBcroe,ec1 • LIr"l8O'/logonftvT'IIC ' SlO"SfCoIG<Qono
• ~Ie C:JnO.,I$enSlf,..",-es .C~I'Bu"9fIM:Ytt"I

• ~fuOe/Ptoose/De<ov PCPlOT _ 172.95 MAtRIX MAGIC 172.95
LOC1Pl!O '72.95 • HO' Re5olur.cn GrCXlt'HCS • Mornces l.() fO 20 It 20

•~ Locus AroIvsrs ACtW 172.95 _lneaiLOQO'lfhn'lIC • Qoerohcns onc:I Tests

• Jo 10 20"" Ooer ... • 81t 'v'Q:) Pnntet DulT',p COMCALC_ 172.95
• TJ'QnSI@l"\IS\Mrl'l:;pP' • AC CII'CUlI 0f'0IvS!S

• Xl Noae<](X;c~~ Pl9JI'RQ_~ _-'Z.~~
• COlT\I'TU'lICOttens Svsfemsde5ign

Sl'P '72.95 • \.'onleC~oQ!~t""loes and oro~ sc:naoosneet and

• :fQnSle('lIS (WIth sPP) •~ Gtoph PrintIng CoteulOfor

• Sqno. PtOC~'"'9 • 4t'fVCCJT'O,;ler,'P!1nlE!l' REPORT WRITING• ;;:"' ~aAoce • ~ong Plots
• ;ronSle'"'! AncJryS!~ DCNAP '72.,95

• oc C.rC\.J;l~S TEKCAl.c; '7295 ~!9!'!~~iter '97.95
SlAP '7295 • ~~·2OJC~IS

~----

• ;r"lt~llQer1f PrClCfJeoOel
.. • Scoentohc CXulQlor

.2;:;:~IAnaJySlS • f<.klnleCorIQ;~tMI€'S • $tetJstocs.r Gropn,cs • CheCkS Structure

• '000"""""
• ;.c~ C:)I'T'OOTOOle ~.oe!> $y"1TOX Purclu:JT1O"l 5oel1ing.

·ord i'""lOI'e

[ill) Engineering 2200 Business Way, Suite 207 :E _l
Professional Software RNeIside, CA 92501 USA (714) 781.0252

ACNAPJ Circuit Analysis Program
ACNAP3 is an easy to use, general

purpose electronic circuit analysis
program which analyzes circuits con-

QPARSER' Language Translator
QCAD Systems has announced their

QPARSER + program generator for
computer language and translator
development.

A translator writing system is a
program generator which can be used in
the development of any language intensive
programming project such as a compiler,
assembler, a language to language tran
slator (Pascal to C for example), a file
format converter, a complex user inter
face, etc,. Other examples are the
development of hardware control
languages, or interpreters.

William A. Barrett, a member of the
QCAD team, is a coauthor of the book
"Compiler Construction" published by
Science Research Associates (ISBN 0-574
21765-7) which is a very useful reference
for use with QPARSER +

QPARSER+ is available for the IBM
PC, the VAX, or the Macintosh, from
QCAD Systems, Inc., 3333A Octavius
Drive, Santa Clara, CA 95054, phone
(408) 727-6671.

sisting of resistors, capacitors, inductors,
transistors, operational amplifiers, FETs,
transformers, etc. Circuits up to 200 com
ponents and 50 nodes can be analyzed in a
single pass. Larger circuits can be chained.
ACNAP3 features unlimited length user
definable macro operations, double
precision accuracy, unattended AUTO
execute and BATCH mode operations,
subcircuit capability, iterate component
value capability, execution of external
programs from within ACNAP3, and
component libraries. ACNAP3
automatically computes the magnitude,
phase and delay at any node in the circuit
and includes Global Worst Case, Monte
Carlo, Input and Output Impedance
calculations, Noise Equivalent Bandwidth
and Sensitivity analyses. Free format in
put, interactive menus, and input error
trapping make ACNAP3 easy to learn and
use. Low cost graphics modules can be
added to upgrade ACNAP3 to drive high
resolution graphics screens, graphics prin
ters, and pen plotters.

ACNAP3 is available in PC/MSDOS
and Apple Macintosh versions for $125
from BV Engineering, 2200 Business
Way, Suite 207, Riverside, CA 92501
phone (714) 781-0252.

TRSDOS
PeDOS

AFFORDABlJ:
ENGINEERING

SOFTWARE
CP/M
MSOOS

,.£ CATALOG AND)l SOFIWAREAPPUCATIONS GUIDE

I/O Add-On Board for the 5B180
Electronic Technical Services (ETS), in

cooperation with North American One
Eighty Group (NAOG) and XSystem Sof
tware. has announced a hardware and sof
t.....are enhancement for the Micromint
SB180. The ETS-180-IO+ is a full
function input/output board, combining
all the "must-have" features necessary to
make the SBI80 a versatile computing
engine for efficient software develop
ment, personal computing, or real time
applications.

The all CMOS ETS-180-IO+
provides-Two additional High speed
(115.2 kbps) serial ports with CPU in
dependent baud rates and full hardware
handshaking-Twenty-four bits of user
configurable parallel I/O-Special ver
sion of the XBIOS banked operating
system with setup and format utilities, full
Z-System support alternate bank disk
cache and optimized (2.5 to 5K larger)
TPA memory-Complete SASI/SCSI in
terface, includes XBIOS support for all
popular SCSI compatible hard disk con
trollers and drives-Battery-backed real
time clock, with DateStamper time and
date stamping of disk files fully integrated
into XBIOS-Full buffering of the expan
sion bus for other add-on boards-Com
prehensive interrupt support-All CMOS
chip complement for low power
operation.

The ETS-180-IO+ is available to in
dividual users through NAOG for $349.95
complete with software, and is available
for a limited time for an introductory
price of $299.95 including a one year
membership in NOAG. Current NAOG
members can purchase the ETS-180-IO +
for $284.95. For more information, call
Bruce Morgan at (215) 443-9031 or write
to: NAOG/ETS, PO Box #2781, War
minster, PA 18974
SB180 is a trademark of The Micromint,
Inc.
ETS-18Q-IO+ is a trademark of Elec
tronic Technical Services
NAOG is a trademark of Bruce Morgan
XBIOS is a trademark of XSystem Sof
tware
Z-System is a trademark of Echelon, Inc.
The DateStamper is a trademark of
Plu·Perfect Systems, Inc.

38 The Computer Journal/Issue '28



Programming Style
User Interfacing and Interaction

by Art Carlson

One of the first questions a user has when starting with a new
program is "How do I enter the parameters which the program
needs in order to work?" And some of the questions a software
designer needs to address are "How many parameters are in
volved, are some of them defaults which the user should be able
to change, what is the skill level of the potential user, and how of
ten will the program be used?"

I used the term "software designer" because the structure of
the software should be designed by someone who considers how
the user, the program, and the hardware interact with each other.
While the the software is often designed and programmed by the
same person, or a small group of persons, this is not the best
arrangement because programmers (myself included) are usually
so concerned with the technical programming details that they fail
to fully consider the user. After all, it's obvious to them (the
programmers) how the parameters should be entered, so why
shouldn't it be just as obvious to the the novice first time user?

I won't use the term 'user friendly' because it has been
overused-even for some programs which are user frustraters.
I'm sure that you can supply your own list of programs which run
from the extremes of either offering no hint of how to enter the
parameters to the opposite extreme of holding you in such a tight
over-friendly hug that you can't break out. User/program in
teraction is a design function at least as important as the problem
solving algorithms, but I have seen very little practical material on
how to design programs which work with the user, giving them
the help they need but not more than they want. Yes, it is possible
to provide too much help-I don't like programs which lock me
in a friendly shell with level after level of menus when I already
know where I want to go.

Menus or Command Line Parameters
Most useful programs require some information about which

ftles to work with or which operations to perform (called
parameter passing), and the two most frequently used methods
are command line parameters and menus.

An example of the use of command line parameters is the PC
DOS copy command where you would enterCOPY A:THISFILE

B:THATFILE which copies the ftle named THISFILE from drive
A: to a me named THATFILE on drive B:. An example of the use
of menus is WordStar 3.0 where you enter 0 for the copy com
mand as shown on a menu, and then are asked "Name Of File To
Copy From?" If you enter an acceptable me name, you are asked
"Name Of File To Copy To?" With WordStar, if you try to copy
to an existing file you receive the message "File FILENAME
Exists -- Overwrite (Y/N):. That's error checking, a critical part
of user interaction which is a lengthly subject in itself. But how
the errors are handled after they are detected should be part of the
overall user interface design.

The difficulty of designing the user interface varies with the
complexity of the program and the composition of the audience.

The Computer Journal/Issue #28

It is relatively easy to design the interface for a simple program in
tended for a very small technical audience with similar skills who
are expected to use the program frequently enough to remember
the commands. For example, a typographer who uses a program
to send files to the phototypesetter many times each day should be
comfortable with using a few command line parameters because it
is a simple one-step operation and they use the same command
structure frequently enough to remain familiar with it. Another
factor is that they are skilled professionals, working on a terminal
most of the day, who have the financial incentive to be fast and
accurate, and the use of command line parameters instead of
menus will save a significant amount of time for programs which
are used many times each day. Menus with beautiful multicolor
graphics may impress the novice or the dilettante, but they slow
the operation, and in business TIME is MONEY. Therefore, fast
is better than beautiful for programs which are used frequently by
businesses.

"User/program interaction is a design
function at least as important as the
problem solving algorithms."

The most difficult user interface to design is the one for a
complex program with many steps which is intended for a very
broad general market with a wide range of skill levels, where the
individual only uses the program occasionally. It is especially dif
ficult when the person (it sure is clumsy trying to avoid using the
unisex term 'he', and I refuse to use he/she) also uses other
programs with a different command structure so that he becomes
confused and can't remember which commands are used for
which program.

User Interaction Design vs. Program Design
Most programmers (myself included) concentrate on the

"how to accomplish the task" aspect of programming and then
tack on the minimum amount of code required to get the input
from the user, and there is also usually little or no handling of
errors (often just a crash with a warm boot and return to the
system prompt).

37

•



Like most other people, when I started programming, I con
centrated on learning how to write the code to perform the
primary functions I needed and I paid little attention to the
philosophy of program design and user interaction. Now I can see
the 'leed to improve the people interface aspects of my program
ming, but I haven't located much useful reference material on this
subject. I have shelves full of programming books, but they all
treat the technical aspects of writing code and technical problem
solving details-is this because that was the only type of book
which I selected, or is there a lack of material on this subject? It
certainly is easier to write about concrete objective technical
aspects, than it is to write about the nebulous subjective user in
teraction interface.

The technical advancements in the next generations of com
puters with increased speed and memory, plus multitasking and
multiusers, will not eliminate the problems of the user interface
design-in fact, as more non-computer-experts use these systems,
the faults of poor design will become even more apparent and
more frustrating. Hot-Shot programmers can write code, and
users can complain, but it will take experienced people who have
worked with both good and bad programs and who can at least
write pseudo code to design the user interface.

A Design Philosophy
Since I can't find the information I need, I'm going to write

it! And I'm depending on our readers to argue, disagree, and to
offer their experiences and suggestions. Our goal will be to design
a range of interfaces for various situations, write system indepen
dent pseudo code, and then write the routines in portable high
level languages such as Pascal, C, or Modula-2. I think I heard

some battered programmers yell "It's impossible to please
everyone," and it is impossible to design a reasonable sized inter
face which will please everyone-but we can at least definewhat
should be considered and what methods there are from which to
choose.

The first consideration should be the user environment. Is it
used for business or pleasure? Is the user experienced or a novice?
Is it used frequently or seldom? Is the program simple or com
plex? Is the terminal local or remote? These and other factors will
determine the overall design requirements.

Another very difficult but also very important aspect is
satisfying the user's preferences. I feel very strongly that I want to
have both command line parameters and menus available without
being locked into either one!

Where do We Go From Here?
My plan is to develop a spectrum of user interface and in

teraction strategies varying from the simple to the complex, plus
the criteria for selection. This will be accompanied by pseudo
code, code fragments, and useable routines-depending on reader
feedback and participation.

This information is of critical importance to everyone who
writes a program, and its usefulness will depend on your input.
It's up to you to argue with me, disagree with me, expand on what
I have to say, or just add your comments.

We start on the next issue as soon as this one is sent to the
printer, so write your letters now! •

-------. Turbo Pascal· Advanced Applications

Abook with

ADVANCED TOPICS in TURBO PASCAL

38

Table of Contents

o Optimization Techniques
o Using the DOS Background Print Spooler
o System Level Tools
o Creating Libraries
o Exploiting Command Line Arguments
o Using a Binary Search Tree
o Techniques for Data Compression
o Claiming CP/M Memory
o Break the 64K Data Limit
o Linked Lists for Data Structuring
o Interrupts from Turbo Pascal
o Calling the DOS Command Processor
o Bit Mapped Graphics
o Teaching an Old Screen New Tricks
o Implementing 20 Core Graphics
o Build aSubset Pascal Compiler

Order Turbo Pascal· Adranced Applications for $19.95 post
paid in USA; with MS DOS disk, $32 ..95. Add $3.50 for surface ship
ment to Canada or other countries; air rates on request. Order from
Rockland Publishing, Inc., 190 Sullivan, Suite 103, Columbia Falls,
MT. 59912. Visa or Mastercard accepted. Phone orders , call
(406) 257·9119. Free Information Is aVllllbl•. Dealer inquiries
welcomed.

': ..packed with good
advanced technical information. ..

The Computer Journal/Issue #28



Patching Turbo Pascal
Removing the Blasted II: =" Requirement

l

by Clark A. Calkins, C.C. Software

I like to make things easy on myself. Whether I am
programming in BASIC. Fortran, Pascal, or whatever, I want it
to be as quick and painless as possible. It especially annoys me to
have a compiler force me to type in needless characters. In Pascal,
the assignment operator ": =" is just a needless burden. I always
forget that blasted colon! After all there is no reason why the
compiler needs the colon in this case. Fortran doesn't require it.
Neither does Basic. So why does Pascal?

Since I do most of my Pascal programming using Turbo
Pascal (on a Z-80 machine), and I do like it, I thought I would at
least fix this so that an equal sign would suffice for an assignment
operator. Now I know what you are thinking, I will get all con
fused when I use a different compiler. And you're right. Luckily
for me I don't use any other compiler on a regular basis.

Figure 1 - Patch Instructions for Turbo
Pascal v3.00A and 3.01A (Z-80)

Version 3.0UA (Z-80)

A>DDT TURBO.COM
DDT VERS 2.00
NEXT PC
lAOO 0100
-S6F7F
6F7F 76 OB
6F80 6E 6F
6F81 82 18
6F82 7F F3
6F83 C8 •
-GO
A>SAVE 121 TURBO.COM

Version 3.01A (Z-80)

A>DDT TURBO.COM
DDT VERS 2.00
NEXT PC
7900 0100
-S6F61
6F61 58 ED
6F62 6E 6E
6F63 64 18
6F64 75 F3
6F65 C8 •
-GO
A>SAVE 120 TURBO.COM

The Computer Journal/Issue #28

The patches described in Figure I will work for Turbo Pascal
version 3.00A and 3.01A but not for version 2 or less. Use DDT
as shown to make the changes (they really are easy!). Note that
the characters that you are to type are shown inbold type. After
changing the compiler, type in the following sample program just
to make sure it runs okay.

Sample Program

program Demo;

var
i:integer;
Miles ,Gallons ,mpg: real;

begin
for i=l to 10 do writeln('testing •••• ' ,i);
Miles:=287.0;
Gallons=12.3 ;
mpg=Miles/Gallons;
writeln(' current miles per gallon =' ,mpg);
end.

As you can see, the colon is now optional in assignment
statements and also the "for" statement. It was left in one
statement just to check that the compiler will still allow it as it did
before. We want to be compatible with all of our previously writ
ten programs, of course.

One side effect of this change is that the error message
displayed when an improper assignment operator is entered is
number 06, lit =' equals expected" rather than number 07, "': ='
expected". Oh well, I can live with that.

Although it would be more involved, this patch could have
been associated with a new compiler option so it could be turned
on or off. This would require the compiler to be extended to make
room for the added instructions. Maybe next time I'll go into how
this can be done. •

39

..'JJ



Feedback

(Continued from page 5)
indicate that really new uses are being
made of the newer CPUs. Instead, I feel
that lots of programs that have worked irl
the past are being adapted to the newer
applications, and that means using the
true and stable Z80 cards.

What I feel is important to keep in
mind is that most applications in in
dustrial use, like lab work, need special
I/O operations, and the actual CPU is
secondary. That is and always will be the
STD BUs's strongest feature. Yes, it
would be nice to see more 641805 running
some of those older Z80 programs, but
when the collecting data is more impor
tant than fancy menus I rather doubt we
will see many changes in the ratio of zao
to other devices. What we really need is
some facts about the STD Bus usage, not
from the manufacturers, but from the
real users.

Bill Kibler

Data Aquisition and Control
I am a recent subscriber and I thought

that I would try to tell you a little about
myself.

I am a Mining Engineer currently em
ployed in the Coal Industry. I have a
strong background in electronics and of
ten make use of this in my work. I sub
scribe to a number of periodicals and
purchase quite a few books. I have been
interested in data aquisition and control
(discrete and process) for some years. I
presently own two PC Compatibles (XT
at home and AT at work), an Ampro LB
186 (with SCSI hard disk that I added
myself), a Micromint BCC-52 and a
number of other things that I put
together myself. The common thread in
my micros is that they all use Intel
MPUs. I can, with difficulty, make
prototypes and simple printed circuits. I
prefer to purchase bare boards when I
can find suitable ones. I am always on
the lookout for surplus and bargains. I
regard software as a necessary evil.

I will be interested in articles dealing
with control applications, the Intel MCS
51/52 family, the 8086 family, the Ampro
Little Boards, the SCSI Bus, single board
computers, power I/O and similar real
time applications.

W.G.

40

so Software, Inc., maker of the original

CP/M-8D CLanguage Development

System, knows

Time is precious
So the compilation. linkage and execution
speeds of BOS Care the fastest available. even
(especially!) on floppy-based systems. Just ask
any user' With 15.000 + packages sold since
1979. there are lots of users ...

New' Ed Ream's RED text editor has been
integrated into the package. making BOS Ca
truly complete, self-contained Cdevelopment
system.

Powerful original features: COB symbolic
source-level debugger. fully customizable
library and run-time package (for convenient
ROM-ing of code). XMOOEM-compatible
telecommunications package, and other sample
applications.

National CUser's Group provides direct access
to the wealth of public-domain software written
in BOS C, including text editors and formatters,
BBS's. assemblers. Ccompliers. games and
much more.

Complete package price: $150.
All soft-sectored disk formats, plus Apple
CPlM, available off-the-shelf. Shipping: free. by
UPS, within USA for prepaid orders. Canada: $5.
Other: $25. VISA, MC, COD, rush orders accepted.

BO Software. Inc.
P aBox 2368
Cambridge MA 02238
617·576·3828



Choosing a Language for Machine Control
Using HTPL as a CNC Language

by Joe Bartel, Hawthorne Technology

At the present time there is a lot of interest in small computer
controlled machine tools and other real work applications for
microprocessors. Many of these fit in the category of light
automation. while others fall into the category of robotics.

A moving platform or other toy like creation may be fun for
learning basic concepts but they can't do anything to earn their
keep. Microcomputers took off and got big, because as well as
being fun to work with. they could do enough useful work to
justify the cost. If small robotic or automation projects can be
built that can pay their own way, then home automation can grow
like home computers did. .

If you want to program a computer to do accounting there
are many languages that are well adapted to the task. such as data
bases or spread sheets. If you want to do graphics there are tools
built into many modern dialects of BASIC that make it easy.
There are also graphics built into many current home computers.
All the things you can do with the standard computer outputs like
video or paper are relatively easy.

Control of a machine is not so easy. While most printers are
pretty much the same this cannot be said for machine tools. Most
machine tools are expensive relative to simple office tools like
printers or plotters, and there are not as many of them so it is not
as easy to get time to play with one. Many automation projects
are flexible but are even less standard than lathes or milling
machines.

When contemplating how to program a machine, two ap
proaches come to mind. You can input the desired part using a
graphic technique or you can use a programming language. The
use of graphics to input a physical shape and then edit it with a
mouse is very appealing. This is one of the easiest ways for an
operator to enter the data, however this is very hard to program.
In small volumes or hobby kinds of machines the effort saved in
inputting the part is more than lost in the cost and complexity of
the graphics input and editing. Also you need the graphics output
and the graphic input.

A non-graphic language means that the programs or parts
can be edited with a common text editor, but creating a new
language for a special application is very expensive. Also it is hard
to know before starting what will be needed in the language or
what is economical to provide and maintain. If a flexible existing
language can be extended to cover the task, the cost is much less.
The language I have chosen to use as an example for control is
HTPL. FORTH is a language that is similar and would also be
good for this. If parts seem rough it is because I am not a
machinist but a systems programmer.

Every command/control language has certain features in
common. There must be a way to send messages to the operator
and to get information from the operator. There are objects that
can be defined and operations that can be performed on the ob
jects. There also must be some way for the language to be entered
into the system, edited, saved, and translated into something

The Computer Journal/Issue N28

meaningful. From an implementation standpoint the most impor
tant feature is how parameters are passed to subroutines.
. In the past BASIC or a language like BASIC has been used as

a base from which to start. The advantage is that the form of the
program is familiar to most of the users of the language. A big
disadvantage is that it is hard to modify a language like BASIC.
When looking at Pascal or Modula the task is even larger. Much
of the complexity of these involve features that are not needed by
the machine tool programmer.

For any given size translator, an RPN language can generate
more efficient code and a more reliable language processor. The
form of the verbs (operators) in an RPN language mean that
those defined by the user look very similar to and act similar to
those provided by the language developer. A smaller language
also means that there are fewer rules that need to be used in tran
slating the high level code into machine actions. For machine con
trol on an experimental basis this is very important. Each
numerical control tool will need to have the language customized
for it.

In an RPN language, the action word always finds the values
to work with on the evaluation stack. Another advantage is that
the user defined operating words look the same as the built in
words. The HTPL language differs from FORTH in making more
use of variables in memory like BASIC. Also the structure is very
similar to more conventional languages like BASIC.

When we created HTPL we decided to make it a compiled
language rather then an interpreted or threaded code language.
When using a RAM disk a two pass compiler can be as fast as an
incremental compiler. The use of a two pass approach also means
that procedures can be forward referenced and it can use other
language features that are hard or impossible with an incremental
compiler.

This example assumes that we will be working with a drill
press on an XY table. What we want to do is to program a pattern
and then let the machine drill the holes. We will also assume that
all the standard HTPL words are available and will only define
those that need to be added to create a usable parts programming
system. The actual coding for the new action words will not be
given because they would probably be done in assembly and
would be different for each machine. Also we did not actually
build themachine.

A typical action word that moves the drill to a new location
will depend on what kind of motor control is used. Also it will
depend on how and where its address is.

The sample programs show the use of movement and the use
of procedures. A complex part that has a repeating pattern can be
made by calling a predefined procedure. If a change is needed to
the pattern then by changing it all the other parts change in the
same way. In our example a hole pattern is used 4 times but in a
different place each time. If this was used for circuit boards then
different patterns could be defined for different ICs.

41



Sample Program

Advertiser's Index

orgset
setrpm
coolon
cool off
position
move
getpos
drill
stop

( -- )
(rpm
( )

( )

( xx yy
( xx yy
( xx yy
( )

( )

set the origin to 0,0
set the rpm for the drill
turn on coolant
turn coolant off
move the drl I I to an absolute location
move the dri I I to a relative location
find out where we are
dri II a hole
stop the machine

AMPRO Computers 26,27

BD Software 40

Bear Electronics 23

Bersearch . . . . . . . . . . . . . . . . . . . .. 8

program main part of program )
orgset
6 !count!
repeat

holepat
.count! -1 dup !countl =0 until

o 0 position
stop
"_- PART DONE __ II message
end

BV Engineering 36

C User's Group , 43

c.c. Software 42

proc holepat ( dri I I hole pattern
1200 setrpm coolon
dr i I I 200 0 move dr I I I
200 minus 0 move dril I 2000 move dril I
cooloff end

Computer Journal. 34,35

Echelon, Inc 2,21

Hawthorne Technology 32

Kenmore Computer Tech 23

Micromint. . . . . . . . . . . . . . . . . . . .. 5

Rockland Publishing 38

. Sage Microsystems East. . . . . . . .. 18

Silicon Valley Surplus 11

Turbo Power 33

We also have an example of a loop.
The hole pattern is repeated 6 times on the
part. If a larger part needed the same pat
tern then it could as easily produce the
pattern any number of times.

The list of control procedures is an
example of what could be done. Most of
these will have to be created in assembly
language to control the actual motors of
the drilling machine. If the use of these
procedures is standardized then it should
be possible to develope a library of
programs that can be moved between
simple home produced CNC machines.

In a future article we will examine

how to make the hardware that the
program is controlling. We will also look
at what is needed to produce a control
program for a lathe or a milling machine
or a robot.

Editor's Note: We will be using the HTPL
language for both the TinyGiant 68000
SBC and various CNC and control
programs. A complete description of
HTPL can be obtained from Hawthorne
Technology, 8836 S.E. Stark, Portland,
OR 97216phone (503) 254-2005. •

Ultra Link 16

Ever Wondered What Makes 7"t1.RBaPAsc:: 'lIck?

I···VIM

Source Code Generators
by C. C. Software can
give you the answ~r.

~
-

7...
-~·,!U.

'0 • ".1
o -Th. Cod. lu.ter.-

The SCG-TP program produces
~ commented and labeled
source code for your TURBO
Pascal system. To modify,

just edit and assemble. Version 3.00A (Z80) is $45.
SCG's available for CP/M 2.2 ($45) and CP/M+ ($75).
Please include $1.50 postage (in Calif add 6.5').

"The darndest thing
I ever did see ••• "

" •.. if you're at
all interested in
what's going on in
your system, it's
worth it."
Jerry pournelle,
BYTE, Sept '83

C. C. Software, 1907 Alvarado Ave. Dept H
walnut Creek, CA 94596 (415)939-8153

CP/M is a req1atered trademark at D1q1tal Rea.arch, Inc.
TURBO Pascal 1s a trademark at Borland Internat10nal

42 The Computer Journal/Issue 1'28



Computer Corner

(Continued from page 44)

with the newly added words and saved
you from loading them each time you
start the tutor program, but th\!n you
would not learn how to load programs.
Forth can only be learned by using it.
take it from one who tried to only read
about it.

Let's discuss a use which Art
suggested. a business package to keep
mailing labels and update them. The first
step in doing any program would be
defining the task; the label sizes. how
IT,any lines, how many labels, updating
problems, and so on. Now that we have
the objective defined, we look at how
Forth can help; should we use the
regualr screen system, or just open files
and move records around. We might also
be more concerned about using an
existing printer and whether it will han
dle the labels correctly. What we can do
first then is to work on the problem areas
and leave some of the others till later.
Take the printing problem, I would write
the words to print labels using the inter
nal editor, and save them in one or two
screens. I would test them on a screen of
addresses and leave the file words till
later. This would allow me to see if I have
any problems printing or handling a few
labels. I also get to learn if some
problems might arise later that I didn't
see eariler. (For a good explanation on
this bottom up programing style read
"THINKING FORTH" by Leo Brodie, it
is full of how and why of programming.)

You use this process until the entire
program is written, with each new word
tested before writing the next one. When
finished you have a running program,
usually with few bugs (remember you
tested each new word!), What you have
will be several screens of new words that
are added to the regular Forth dictionary
to handle the desired task. You would fir
st use routines that worked using regular
Forth operations, then replace them with
your own routines (like a special line
editor), till you got a program that has
the Forth aspect hidden to the user. This
reminds me that the first wordprocessor
for the PC was a Forth program, with the
Forth operations hidden from view. If I
was doing this for my office, I would just
have the Forth system auto load the
program, while allowing some password
exit for maintenance. As a saleable item,
however you would most likely want
users kept out and would generate a
special version of Forth.

The Computer Journal/Issue 1128

What we have are three ways to create
our mailing label system. The first way
is to write our extensions in screens
(saved on disk as a separate file
MAILER.BLK) and then load these ex
tensions to our Forth program (OPEN
then 1 LOAD) when we want to run the
application. This allows easy access to
the words and their definitions when
problems arise. It reqUires that the
operator have some knowledge of the
system. such as how to load an ap
plication. Once in the program, no fur
ther Forth understanding is needed. This
is basically how my tutor program
works.

The next way is to change the Forth
system sign on screen to auto load the
application, much as the trained
operator would do. This would still give
you the use of Forth if you left some form
of hooks to get to it. You would do this by
saving the modified Forth system. using
Forth's SAVE FORTH word. This saves
the new words and the system image. of
which you would have modified the
booting screen to open your program file
and load the extensions. You could also
just load ALL the new words and save
this image. The difference being, a
separate source file (that can be up
dated) in the earlier version, while the
latter requires resaving the entire Forth
system if you have changes to make.

The last way has to do with meta com
pilation, or using your own system to
genreate a new system. This is the area
of Forth I plan on studying next. In this
operation we generate an entire system
with only those functions we need to run
our application. You start with the kernal
and add only the utilities or screens
needed by the program. The PC wor
dprocessor was done in this manner,
producing a product hard to tell different
from any other application. What is dif
ferent however is the development time
in getting to this phase. To get to this
stage, we were able to test small portions
using regular Forth. Try our package out
as extensions to regular Forth. Do beta
testing using a saved Forth system and
lastly market a smaller non-Forth
looking product.

When it came to writing my tutor ar
ticle, I guess I didn't cover all the ways to
use the program. One reason for this is
the many options you have. The other
reason is the ease with which you can
load and run the package. As so often
happens you sometimes can not see the
forest for the trees. Forth at times can be
so simple you expect to have to do more

not less.

Forthing Ahead
I aIr. making plans to resurrect my

Forth based monitor program, only this "
time I am using some proven hardware. I
have a public domain Forth monitor for 1I

the Xerox 820. but no Sl'urce code, it is a
bit short. and without the features I want..
We also had a reader indicate wanting to
see some more zao stuff and so I think 11

making a Forth monitor for the 820 will
be an ideal project. My problems with
the 68K monitor project were hardware,
not Forth. but that may get off the "
ground yet. I have swapped the 6809
system for a better Sl00 bus system and
will be using it for the 68K projects,
(maybe even a Novix 4000>' I have the
HTPL K-OS ONE operating system and
will port it over soon. I have talked to
Hawthorne Technology and we are "
trying to get more documentation on por
ting their system for those having
troubles. Hopefuly I will have more to
say on this later. In fact. ..untillater..en- ~

joy.•

..

43



THE COMPUTER CORNER
A Column by Bill Kibler

Time keeps moving on it seems, even
when you would rather it didn't. I just got
back from a school in Los Angeles and
now have to make up for being away for a
week. I had planned on doing this article
last week, but a surprise trip to L.A. put a
crimp in the plans. The trip however ac
tually added to what I have to say.

The school was on a GE industrial
computer, one that I have been main
taining for three years. I knew there was
a lot I didn't understand about the
system and the school helped in that
respect. The school also confirmed my
feelings about GE and their equip
ment-don't buy it if you can avoid it.
This statement really has to do with their
documentation, and as you know, I am a
stickler for good documentation. GE has
the worst documents I have ever used,
except for those unreadable foregin tran
slations. GE has their own way of
documenting their equipment and the
school was mostly how to interpret what
they did. The rest of the world puts a
slash mark through their zeros, not GE
they do it to the letter O. To make mat
ters worse, their manuals are assembled
collections of all engineering drawings
used in every version of the machine.
This means you may have to thumb
through all 500 drawing until you find the
one you are after. Indexes are useless
because some of the drawings are num
bered and many are not. It is all really a
waste of time, when compared with other
companies who give you "as built" prin
ts, or properly organized manuals which
you can use quite easily. The last blow of
the whole affair is that GE charges you to
learn how to use their books, when most
compaines have free training (you pay
your own expenses).

Enough of the industrial computer
world, let's see what is happening in the
business computer industry. The open
MAC is out and the rest of the 68K units
will have their 68020 machines out soon. I
think the open MAC will help out a lot,
but it took far too long for its release, and
the price is a bit steep for my pocket
book. I am waitng for the MEGA ST, that
is the Atari ST in a PC style box with 1, 2,
or 4 megs of memory (at half the price of

44

the MAC), As you may remember I feel
the 68K series of machines is far superior
to all the 8086 based machines. I had a
chance to see this when running windows
on a PC and compared the same
operation on the ST. The ST beats the PC
hands down, it is faster and produces bet
ter windows and utilities. The machines
however that have my interest currently
are the boards using the Novix 4000.

My interest in Forth has gotten a boost
over the past few months with the release
of the Novix chips. These chips run Forth
as their only instruction set. I recieved
some fact sheets on them and found out
that they can also run many instructions
combined as one instruction. This means
that one machine cycle will perform
several operations all together (actually
in parallel) as if it were one Forth word.
The speed advantages are considerable
and can produce around 4MIPS
operation at 4 MHZ clock speeds. Why I
am interested in this chip has to do with
my interest in computers that can be
used for teaching. I am trying to decide
on what would make the most ideal
teaching hardware system, and it is a
toss up between the 68020 and a Novix
8000 (32 bit version),

Speaking of teaching, my tutor
program got some response from Art,
our editor. Let me make it clear that you
don't have to be an editor to have
questions about our articles. When ever
something seems a bit vague, drop us a
note and I will explain it. Art had trouble
understanding how to create applications
using Forth. I think the problem has to do
with having gotten used to hard to use
systems. Let me explain.

Forth as a Concept
When programs were first written,

many of the higher level languages were
little better than assemblers as far as
what you could or could not do. I remem
ber when Turbo Pascal first came out
and what a pleasure it was to move freely
between the writing, compiling and error
checking stages. Even so, we still had to
write an entire program, compile it and
then check to see if it worked. The end
product usually was a program that

either ran under another program (like
BASIC) or was COMed to run under the
operating system. Even the COMed
programs might have embedded
overhead, take C, it can have minimum
sizes of 32K in some systems. That is 32K
even for a one line statement. With all
these many steps and problems, most
users have gotten used to the rather
tedious process of creating programs.

From the start Forth has been dif
ferent, it was never intended to be just a
programming language, but an entire
system for solving problems. The idea
was to break the problems down into
manageable portions, and then provide
the tools to solve that problem, all within
one system. When I look at Forth from
the systems point of view, a lot of the
features become most evident. My tutor
program tried to show those features and
at the same time use them. It does all
that but far too easily. Art and many
others I am sure have trouble understan
ding just how to use the tutor, because I
did not provide several pages of complex
instructions on loading the program.

If you can down load the two programs
from the COMPUTER JOURNAL
bulletin board, you will find an ex
planation on loading and operating the
tutor program in the file TUTOR.DOC.
Those instructions are quite short, just
load your F83 (or Forth) program, and at
the Forth prompt OK, open the tutor file
by using OPEN TUTOR.BLK and when
that is done, load screen 1 by entering 1
LOAD. This is all that is needed to get the
tutor going, or any Forth application
going. Now this is one method and Forth
gives you many others as well. What I
wish most Forth writers would do is
modify their Forth system to include
tutorial or help screens. This means that
the words become a part of the Forth's
regualr dictionary, and when invoked
would go to the disk and load the ap
propriate screen. What you do with my
program is extend the dictionary by
loading five extra screens of new words.
These words then manipulate the text
screens to provide the tutor program. I
could have also saved the Forth image

(Continued on page 43)

The Computer Journal/Issue #28


